rust/tests/ui/proc-macro/issue-78675-captured-inner-attrs.stdout

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

88 lines
3.6 KiB
Plaintext
Raw Normal View History

PRINT-BANG INPUT (DISPLAY): foo! { #[fake_attr] mod bar {
#![doc = r" Foo"]
} }
PRINT-BANG DEEP-RE-COLLECTED (DISPLAY): foo! { #[fake_attr] mod bar { #! [doc = r" Foo"] } }
PRINT-BANG INPUT (DEBUG): TokenStream [
Ident {
ident: "foo",
span: $DIR/issue-78675-captured-inner-attrs.rs:20:9: 20:12 (#3),
},
Punct {
ch: '!',
spacing: Alone,
span: $DIR/issue-78675-captured-inner-attrs.rs:20:12: 20:13 (#3),
},
Group {
delimiter: Brace,
stream: TokenStream [
Punct {
ch: '#',
spacing: Alone,
span: $DIR/issue-78675-captured-inner-attrs.rs:21:13: 21:14 (#3),
},
Group {
delimiter: Bracket,
stream: TokenStream [
Ident {
ident: "fake_attr",
span: $DIR/issue-78675-captured-inner-attrs.rs:21:15: 21:24 (#3),
},
],
span: $DIR/issue-78675-captured-inner-attrs.rs:21:14: 21:25 (#3),
},
Group {
delimiter: None,
stream: TokenStream [
Ident {
ident: "mod",
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:27:5: 27:8 (#0),
},
Ident {
ident: "bar",
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:27:9: 27:12 (#0),
},
Group {
delimiter: Brace,
stream: TokenStream [
Punct {
ch: '#',
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
spacing: Alone,
span: $DIR/issue-78675-captured-inner-attrs.rs:28:9: 28:16 (#0),
},
Punct {
ch: '!',
spacing: Alone,
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:28:9: 28:16 (#0),
},
Group {
delimiter: Bracket,
stream: TokenStream [
Ident {
ident: "doc",
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:28:9: 28:16 (#0),
},
Punct {
ch: '=',
spacing: Alone,
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:28:9: 28:16 (#0),
},
Literal {
kind: StrRaw(0),
symbol: " Foo",
suffix: None,
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:28:9: 28:16 (#0),
},
],
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:28:9: 28:16 (#0),
},
],
Implement token-based handling of attributes during expansion This PR modifies the macro expansion infrastructure to handle attributes in a fully token-based manner. As a result: * Derives macros no longer lose spans when their input is modified by eager cfg-expansion. This is accomplished by performing eager cfg-expansion on the token stream that we pass to the derive proc-macro * Inner attributes now preserve spans in all cases, including when we have multiple inner attributes in a row. This is accomplished through the following changes: * New structs `AttrAnnotatedTokenStream` and `AttrAnnotatedTokenTree` are introduced. These are very similar to a normal `TokenTree`, but they also track the position of attributes and attribute targets within the stream. They are built when we collect tokens during parsing. An `AttrAnnotatedTokenStream` is converted to a regular `TokenStream` when we invoke a macro. * Token capturing and `LazyTokenStream` are modified to work with `AttrAnnotatedTokenStream`. A new `ReplaceRange` type is introduced, which is created during the parsing of a nested AST node to make the 'outer' AST node aware of the attributes and attribute target stored deeper in the token stream. * When we need to perform eager cfg-expansion (either due to `#[derive]` or `#[cfg_eval]`), we tokenize and reparse our target, capturing additional information about the locations of `#[cfg]` and `#[cfg_attr]` attributes at any depth within the target. This is a performance optimization, allowing us to perform less work in the typical case where captured tokens never have eager cfg-expansion run.
2020-11-28 17:33:17 -06:00
span: $DIR/issue-78675-captured-inner-attrs.rs:27:13: 29:6 (#0),
},
],
span: $DIR/issue-78675-captured-inner-attrs.rs:22:13: 22:18 (#3),
},
],
span: $DIR/issue-78675-captured-inner-attrs.rs:20:14: 23:10 (#3),
},
]