rust/crates/hir_ty/src/infer/unify.rs

484 lines
17 KiB
Rust
Raw Normal View History

//! Unification and canonicalization logic.
use std::borrow::Cow;
use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
2020-05-20 05:59:20 -05:00
use test_utils::mark;
use super::{InferenceContext, Obligation};
use crate::{
BoundVar, Canonical, DebruijnIndex, GenericPredicate, InEnvironment, InferTy, Substs, Ty,
TyKind, TypeCtor, TypeWalk,
};
impl<'a> InferenceContext<'a> {
pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b>
where
'a: 'b,
{
Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
}
}
pub(super) struct Canonicalizer<'a, 'b>
where
'a: 'b,
{
ctx: &'b mut InferenceContext<'a>,
2019-05-04 08:42:00 -05:00
free_vars: Vec<InferTy>,
/// A stack of type variables that is used to detect recursive types (which
/// are an error, but we need to protect against them to avoid stack
/// overflows).
var_stack: Vec<TypeVarId>,
2019-05-04 08:42:00 -05:00
}
#[derive(Debug)]
2019-05-04 08:42:00 -05:00
pub(super) struct Canonicalized<T> {
2020-11-02 09:31:38 -06:00
pub(super) value: Canonical<T>,
2019-05-04 08:42:00 -05:00
free_vars: Vec<InferTy>,
}
impl<'a, 'b> Canonicalizer<'a, 'b>
where
'a: 'b,
{
fn add(&mut self, free_var: InferTy) -> usize {
self.free_vars.iter().position(|&v| v == free_var).unwrap_or_else(|| {
let next_index = self.free_vars.len();
self.free_vars.push(free_var);
next_index
})
}
fn do_canonicalize<T: TypeWalk>(&mut self, t: T, binders: DebruijnIndex) -> T {
t.fold_binders(
&mut |ty, binders| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if self.var_stack.contains(&inner) {
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) =
self.ctx.table.var_unification_table.inlined_probe_value(inner).known()
{
self.var_stack.push(inner);
let result = self.do_canonicalize(known_ty.clone(), binders);
self.var_stack.pop();
result
} else {
let root = self.ctx.table.var_unification_table.find(inner);
let free_var = match tv {
InferTy::TypeVar(_) => InferTy::TypeVar(root),
InferTy::IntVar(_) => InferTy::IntVar(root),
InferTy::FloatVar(_) => InferTy::FloatVar(root),
InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
};
let position = self.add(free_var);
Ty::Bound(BoundVar::new(binders, position))
}
}
_ => ty,
},
binders,
)
}
2019-05-04 08:42:00 -05:00
fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
let kinds = self
.free_vars
.iter()
.map(|v| match v {
// mapping MaybeNeverTypeVar to the same kind as general ones
// should be fine, because as opposed to int or float type vars,
// they don't restrict what kind of type can go into them, they
// just affect fallback.
InferTy::TypeVar(_) | InferTy::MaybeNeverTypeVar(_) => TyKind::General,
InferTy::IntVar(_) => TyKind::Integer,
InferTy::FloatVar(_) => TyKind::Float,
})
.collect();
Canonicalized { value: Canonical { value: result, kinds }, free_vars: self.free_vars }
2019-05-04 08:42:00 -05:00
}
pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
let result = self.do_canonicalize(ty, DebruijnIndex::INNERMOST);
2019-05-04 08:42:00 -05:00
self.into_canonicalized(result)
}
pub(crate) fn canonicalize_obligation(
mut self,
obligation: InEnvironment<Obligation>,
) -> Canonicalized<InEnvironment<Obligation>> {
let result = match obligation.value {
Obligation::Trait(tr) => {
Obligation::Trait(self.do_canonicalize(tr, DebruijnIndex::INNERMOST))
}
Obligation::Projection(pr) => {
Obligation::Projection(self.do_canonicalize(pr, DebruijnIndex::INNERMOST))
}
};
self.into_canonicalized(InEnvironment {
value: result,
environment: obligation.environment,
})
}
2019-05-04 08:42:00 -05:00
}
impl<T> Canonicalized<T> {
pub(super) fn decanonicalize_ty(&self, mut ty: Ty) -> Ty {
ty.walk_mut_binders(
2020-02-18 07:32:19 -06:00
&mut |ty, binders| {
if let &mut Ty::Bound(bound) = ty {
if bound.debruijn >= binders {
*ty = Ty::Infer(self.free_vars[bound.index]);
}
}
},
DebruijnIndex::INNERMOST,
);
ty
}
pub(super) fn apply_solution(
&self,
ctx: &mut InferenceContext<'_>,
solution: Canonical<Substs>,
) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars = Substs(
solution
.kinds
.iter()
.map(|k| match k {
TyKind::General => ctx.table.new_type_var(),
TyKind::Integer => ctx.table.new_integer_var(),
TyKind::Float => ctx.table.new_float_var(),
})
.collect(),
);
for (i, ty) in solution.value.into_iter().enumerate() {
2019-07-04 12:26:44 -05:00
let var = self.free_vars[i];
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(ty.clone().subst_bound_vars(&new_vars));
ctx.table.unify(&Ty::Infer(var), &ty);
}
}
}
pub(crate) fn unify(tys: &Canonical<(Ty, Ty)>) -> Option<Substs> {
let mut table = InferenceTable::new();
let vars = Substs(
tys.kinds
.iter()
// we always use type vars here because we want everything to
// fallback to Unknown in the end (kind of hacky, as below)
.map(|_| table.new_type_var())
.collect(),
);
let ty1_with_vars = tys.value.0.clone().subst_bound_vars(&vars);
let ty2_with_vars = tys.value.1.clone().subst_bound_vars(&vars);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
2019-12-01 15:14:28 -06:00
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
for (i, var) in vars.iter().enumerate() {
if &*table.resolve_ty_shallow(var) == var {
table.unify(var, &Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, i)));
}
}
2019-12-01 15:14:28 -06:00
Some(
Substs::builder(tys.kinds.len())
2019-12-01 15:14:28 -06:00
.fill(vars.iter().map(|v| table.resolve_ty_completely(v.clone())))
.build(),
)
}
#[derive(Clone, Debug)]
pub(crate) struct InferenceTable {
pub(super) var_unification_table: InPlaceUnificationTable<TypeVarId>,
}
impl InferenceTable {
pub(crate) fn new() -> Self {
2019-12-01 15:14:28 -06:00
InferenceTable { var_unification_table: InPlaceUnificationTable::new() }
}
pub(crate) fn new_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
pub(crate) fn new_float_var(&mut self) -> Ty {
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
pub(crate) fn new_maybe_never_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::MaybeNeverTypeVar(
self.var_unification_table.new_key(TypeVarValue::Unknown),
))
}
pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
self.resolve_ty_completely_inner(&mut Vec::new(), ty)
}
pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
}
pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
pub(crate) fn unify_substs(
&mut self,
substs1: &Substs,
substs2: &Substs,
depth: usize,
) -> bool {
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
(Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
}
_ => self.unify_inner_trivial(&ty1, &ty2, depth),
}
}
pub(super) fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
match (ty1, ty2) {
(Ty::Unknown, _) | (_, Ty::Unknown) => true,
(Ty::Placeholder(p1), Ty::Placeholder(p2)) if *p1 == *p2 => true,
(Ty::Dyn(dyn1), Ty::Dyn(dyn2)) if dyn1.len() == dyn2.len() => {
for (pred1, pred2) in dyn1.iter().zip(dyn2.iter()) {
if !self.unify_preds(pred1, pred2, depth + 1) {
return false;
}
}
true
}
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
| (
Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
// The order of MaybeNeverTypeVar matters here.
// Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
// Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
| (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
| (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
| (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
fn unify_preds(
&mut self,
pred1: &GenericPredicate,
pred2: &GenericPredicate,
depth: usize,
) -> bool {
match (pred1, pred2) {
(GenericPredicate::Implemented(tr1), GenericPredicate::Implemented(tr2))
if tr1.trait_ == tr2.trait_ =>
{
self.unify_substs(&tr1.substs, &tr2.substs, depth + 1)
}
(GenericPredicate::Projection(proj1), GenericPredicate::Projection(proj2))
if proj1.projection_ty.associated_ty == proj2.projection_ty.associated_ty =>
{
self.unify_substs(
&proj1.projection_ty.parameters,
&proj2.projection_ty.parameters,
depth + 1,
) && self.unify_inner(&proj1.ty, &proj2.ty, depth + 1)
}
_ => false,
}
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
2020-05-20 05:59:20 -05:00
mark::hit!(type_var_resolves_to_int_var);
}
match &*ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
match self.var_unification_table.inlined_probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
2020-05-20 05:59:20 -05:00
mark::hit!(type_var_cycles_resolve_as_possible);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible_inner(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// Resolves the type completely; type variables without known type are
/// replaced by Ty::Unknown.
fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
2020-05-20 05:59:20 -05:00
mark::hit!(type_var_cycles_resolve_completely);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely_inner(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
tv.fallback_value()
}
}
_ => ty,
})
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(pub(super) u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}