2014-05-28 20:36:05 +01:00
|
|
|
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
2012-12-03 16:48:01 -08:00
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
//! See the section on datums in `doc.rs` for an overview of what Datums are and how they are
|
|
|
|
//! intended to be used.
|
2013-05-17 15:28:44 -07:00
|
|
|
|
2014-11-06 00:05:53 -08:00
|
|
|
pub use self::Expr::*;
|
|
|
|
pub use self::RvalueMode::*;
|
|
|
|
|
2014-07-07 17:58:01 -07:00
|
|
|
use llvm::ValueRef;
|
2014-11-15 20:30:33 -05:00
|
|
|
use trans::base::*;
|
|
|
|
use trans::build::Load;
|
|
|
|
use trans::common::*;
|
|
|
|
use trans::cleanup;
|
|
|
|
use trans::cleanup::CleanupMethods;
|
|
|
|
use trans::expr;
|
|
|
|
use trans::tvec;
|
|
|
|
use trans::type_of;
|
2015-01-03 22:42:21 -05:00
|
|
|
use middle::ty::{self, Ty};
|
2014-06-21 03:39:03 -07:00
|
|
|
use util::ppaux::{ty_to_string};
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-10-15 02:25:34 -04:00
|
|
|
use std::fmt;
|
2013-02-25 14:11:21 -05:00
|
|
|
use syntax::ast;
|
2015-01-02 04:09:35 -05:00
|
|
|
use syntax::codemap::DUMMY_SP;
|
2012-12-23 17:41:37 -05:00
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// A `Datum` encapsulates the result of evaluating an expression. It
|
|
|
|
/// describes where the value is stored, what Rust type the value has,
|
|
|
|
/// whether it is addressed by reference, and so forth. Please refer
|
|
|
|
/// the section on datums in `doc.rs` for more details.
|
2015-01-03 22:54:18 -05:00
|
|
|
#[derive(Clone, Copy)]
|
2014-09-29 22:11:30 +03:00
|
|
|
pub struct Datum<'tcx, K> {
|
2012-08-28 15:54:45 -07:00
|
|
|
/// The llvm value. This is either a pointer to the Rust value or
|
2014-01-15 14:39:08 -05:00
|
|
|
/// the value itself, depending on `kind` below.
|
2014-03-28 10:05:27 -07:00
|
|
|
pub val: ValueRef,
|
2012-08-28 15:54:45 -07:00
|
|
|
|
|
|
|
/// The rust type of the value.
|
2014-09-29 22:11:30 +03:00
|
|
|
pub ty: Ty<'tcx>,
|
2012-08-28 15:54:45 -07:00
|
|
|
|
|
|
|
/// Indicates whether this is by-ref or by-value.
|
2014-03-28 10:05:27 -07:00
|
|
|
pub kind: K,
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-09-06 19:13:04 +03:00
|
|
|
pub struct DatumBlock<'blk, 'tcx: 'blk, K> {
|
|
|
|
pub bcx: Block<'blk, 'tcx>,
|
2014-09-29 22:11:30 +03:00
|
|
|
pub datum: Datum<'tcx, K>,
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
|
2015-01-03 22:54:18 -05:00
|
|
|
#[derive(Show)]
|
2014-01-15 14:39:08 -05:00
|
|
|
pub enum Expr {
|
|
|
|
/// a fresh value that was produced and which has no cleanup yet
|
|
|
|
/// because it has not yet "landed" into its permanent home
|
|
|
|
RvalueExpr(Rvalue),
|
|
|
|
|
|
|
|
/// `val` is a pointer into memory for which a cleanup is scheduled
|
|
|
|
/// (and thus has type *T). If you move out of an Lvalue, you must
|
|
|
|
/// zero out the memory (FIXME #5016).
|
|
|
|
LvalueExpr,
|
|
|
|
}
|
|
|
|
|
2015-01-03 22:54:18 -05:00
|
|
|
#[derive(Clone, Copy, Show)]
|
2014-01-15 14:39:08 -05:00
|
|
|
pub struct Lvalue;
|
|
|
|
|
2015-01-03 22:54:18 -05:00
|
|
|
#[derive(Show)]
|
2014-01-15 14:39:08 -05:00
|
|
|
pub struct Rvalue {
|
2014-03-28 10:05:27 -07:00
|
|
|
pub mode: RvalueMode
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
|
2014-05-28 20:36:05 +01:00
|
|
|
impl Rvalue {
|
|
|
|
pub fn new(m: RvalueMode) -> Rvalue {
|
|
|
|
Rvalue { mode: m }
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
// Make Datum linear for more type safety.
|
|
|
|
impl Drop for Rvalue {
|
|
|
|
fn drop(&mut self) { }
|
|
|
|
}
|
|
|
|
|
2015-01-03 22:54:18 -05:00
|
|
|
#[derive(Copy, PartialEq, Eq, Hash, Show)]
|
2014-01-15 14:39:08 -05:00
|
|
|
pub enum RvalueMode {
|
|
|
|
/// `val` is a pointer to the actual value (and thus has type *T)
|
|
|
|
ByRef,
|
2012-08-28 15:54:45 -07:00
|
|
|
|
|
|
|
/// `val` is the actual value (*only used for immediates* like ints, ptrs)
|
|
|
|
ByValue,
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn immediate_rvalue<'tcx>(val: ValueRef, ty: Ty<'tcx>) -> Datum<'tcx, Rvalue> {
|
2014-05-28 20:36:05 +01:00
|
|
|
return Datum::new(val, ty, Rvalue::new(ByValue));
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-09-06 19:13:04 +03:00
|
|
|
pub fn immediate_rvalue_bcx<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
|
|
val: ValueRef,
|
2014-09-29 22:11:30 +03:00
|
|
|
ty: Ty<'tcx>)
|
2014-09-06 19:13:04 +03:00
|
|
|
-> DatumBlock<'blk, 'tcx, Rvalue> {
|
2014-05-28 20:36:05 +01:00
|
|
|
return DatumBlock::new(bcx, immediate_rvalue(val, ty))
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Allocates temporary space on the stack using alloca() and returns a by-ref Datum pointing to
|
|
|
|
/// it. The memory will be dropped upon exit from `scope`. The callback `populate` should
|
|
|
|
/// initialize the memory. If `zero` is true, the space will be zeroed when it is allocated; this
|
|
|
|
/// is not necessary unless `bcx` does not dominate the end of `scope`.
|
2014-12-09 13:44:51 -05:00
|
|
|
pub fn lvalue_scratch_datum<'blk, 'tcx, A, F>(bcx: Block<'blk, 'tcx>,
|
|
|
|
ty: Ty<'tcx>,
|
|
|
|
name: &str,
|
|
|
|
zero: bool,
|
|
|
|
scope: cleanup::ScopeId,
|
|
|
|
arg: A,
|
|
|
|
populate: F)
|
|
|
|
-> DatumBlock<'blk, 'tcx, Lvalue> where
|
|
|
|
F: FnOnce(A, Block<'blk, 'tcx>, ValueRef) -> Block<'blk, 'tcx>,
|
|
|
|
{
|
Improve usage of lifetime intrinsics in match expressions
The allocas used in match expression currently don't get good lifetime
markers, in fact they only get lifetime start markers, because their
lifetimes don't match to cleanup scopes.
While the bindings themselves are bog standard and just need a matching
pair of start and end markers, they might need them twice, once for a
guard clause and once for the match body.
The __llmatch alloca OTOH needs a single lifetime start marker, but
when there's a guard clause, it needs two end markers, because its
lifetime ends either when the guard doesn't match or after the match
body.
With these intrinsics in place, LLVM can now, for example, optimize
code like this:
````rust
enum E {
A1(int),
A2(int),
A3(int),
A4(int),
}
pub fn variants(x: E) {
match x {
A1(m) => bar(&m),
A2(m) => bar(&m),
A3(m) => bar(&m),
A4(m) => bar(&m),
}
}
````
To a single call to bar, using only a single stack slot. It still fails
to eliminate some of checks.
````gas
.Ltmp5:
.cfi_def_cfa_offset 16
movb (%rdi), %al
testb %al, %al
je .LBB3_5
movzbl %al, %eax
cmpl $1, %eax
je .LBB3_5
cmpl $2, %eax
.LBB3_5:
movq 8(%rdi), %rax
movq %rax, (%rsp)
leaq (%rsp), %rdi
callq _ZN3bar20hcb7a0d8be8e17e37daaE@PLT
popq %rax
retq
````
2014-07-23 17:39:13 +02:00
|
|
|
let scratch = if zero {
|
2014-08-06 11:59:40 +02:00
|
|
|
alloca_zeroed(bcx, ty, name)
|
Improve usage of lifetime intrinsics in match expressions
The allocas used in match expression currently don't get good lifetime
markers, in fact they only get lifetime start markers, because their
lifetimes don't match to cleanup scopes.
While the bindings themselves are bog standard and just need a matching
pair of start and end markers, they might need them twice, once for a
guard clause and once for the match body.
The __llmatch alloca OTOH needs a single lifetime start marker, but
when there's a guard clause, it needs two end markers, because its
lifetime ends either when the guard doesn't match or after the match
body.
With these intrinsics in place, LLVM can now, for example, optimize
code like this:
````rust
enum E {
A1(int),
A2(int),
A3(int),
A4(int),
}
pub fn variants(x: E) {
match x {
A1(m) => bar(&m),
A2(m) => bar(&m),
A3(m) => bar(&m),
A4(m) => bar(&m),
}
}
````
To a single call to bar, using only a single stack slot. It still fails
to eliminate some of checks.
````gas
.Ltmp5:
.cfi_def_cfa_offset 16
movb (%rdi), %al
testb %al, %al
je .LBB3_5
movzbl %al, %eax
cmpl $1, %eax
je .LBB3_5
cmpl $2, %eax
.LBB3_5:
movq 8(%rdi), %rax
movq %rax, (%rsp)
leaq (%rsp), %rdi
callq _ZN3bar20hcb7a0d8be8e17e37daaE@PLT
popq %rax
retq
````
2014-07-23 17:39:13 +02:00
|
|
|
} else {
|
2014-08-06 11:59:40 +02:00
|
|
|
let llty = type_of::type_of(bcx.ccx(), ty);
|
Improve usage of lifetime intrinsics in match expressions
The allocas used in match expression currently don't get good lifetime
markers, in fact they only get lifetime start markers, because their
lifetimes don't match to cleanup scopes.
While the bindings themselves are bog standard and just need a matching
pair of start and end markers, they might need them twice, once for a
guard clause and once for the match body.
The __llmatch alloca OTOH needs a single lifetime start marker, but
when there's a guard clause, it needs two end markers, because its
lifetime ends either when the guard doesn't match or after the match
body.
With these intrinsics in place, LLVM can now, for example, optimize
code like this:
````rust
enum E {
A1(int),
A2(int),
A3(int),
A4(int),
}
pub fn variants(x: E) {
match x {
A1(m) => bar(&m),
A2(m) => bar(&m),
A3(m) => bar(&m),
A4(m) => bar(&m),
}
}
````
To a single call to bar, using only a single stack slot. It still fails
to eliminate some of checks.
````gas
.Ltmp5:
.cfi_def_cfa_offset 16
movb (%rdi), %al
testb %al, %al
je .LBB3_5
movzbl %al, %eax
cmpl $1, %eax
je .LBB3_5
cmpl $2, %eax
.LBB3_5:
movq 8(%rdi), %rax
movq %rax, (%rsp)
leaq (%rsp), %rdi
callq _ZN3bar20hcb7a0d8be8e17e37daaE@PLT
popq %rax
retq
````
2014-07-23 17:39:13 +02:00
|
|
|
alloca(bcx, llty, name)
|
|
|
|
};
|
2014-01-15 14:39:08 -05:00
|
|
|
|
|
|
|
// Subtle. Populate the scratch memory *before* scheduling cleanup.
|
|
|
|
let bcx = populate(arg, bcx, scratch);
|
Emit LLVM lifetime intrinsics to improve stack usage and codegen in general
Lifetime intrinsics help to reduce stack usage, because LLVM can apply
stack coloring to reuse the stack slots of dead allocas for new ones.
For example these functions now both use the same amount of stack, while
previous `bar()` used five times as much as `foo()`:
````rust
fn foo() {
println("{}", 5);
}
fn bar() {
println("{}", 5);
println("{}", 5);
println("{}", 5);
println("{}", 5);
println("{}", 5);
}
````
On top of that, LLVM can also optimize out certain operations when it
knows that memory is dead after a certain point. For example, it can
sometimes remove the zeroing used to cancel the drop glue. This is
possible when the glue drop itself was already removed because the
zeroing dominated the drop glue call. For example in:
````rust
pub fn bar(x: (Box<int>, int)) -> (Box<int>, int) {
x
}
````
With optimizations, this currently results in:
````llvm
define void @_ZN3bar20h330fa42547df8179niaE({ i64*, i64 }* noalias nocapture nonnull sret, { i64*, i64 }* noalias nocapture nonnull) unnamed_addr #0 {
"_ZN29_$LP$Box$LT$int$GT$$C$int$RP$39glue_drop.$x22glue_drop$x22$LP$1347$RP$17h88cf42702e5a322aE.exit":
%2 = bitcast { i64*, i64 }* %1 to i8*
%3 = bitcast { i64*, i64 }* %0 to i8*
tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %3, i8* %2, i64 16, i32 8, i1 false)
tail call void @llvm.memset.p0i8.i64(i8* %2, i8 0, i64 16, i32 8, i1 false)
ret void
}
````
But with lifetime intrinsics we get:
````llvm
define void @_ZN3bar20h330fa42547df8179niaE({ i64*, i64 }* noalias nocapture nonnull sret, { i64*, i64 }* noalias nocapture nonnull) unnamed_addr #0 {
"_ZN29_$LP$Box$LT$int$GT$$C$int$RP$39glue_drop.$x22glue_drop$x22$LP$1347$RP$17h88cf42702e5a322aE.exit":
%2 = bitcast { i64*, i64 }* %1 to i8*
%3 = bitcast { i64*, i64 }* %0 to i8*
tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %3, i8* %2, i64 16, i32 8, i1 false)
tail call void @llvm.lifetime.end(i64 16, i8* %2)
ret void
}
````
Fixes #15665
2014-05-01 19:32:07 +02:00
|
|
|
bcx.fcx.schedule_lifetime_end(scope, scratch);
|
2014-01-15 14:39:08 -05:00
|
|
|
bcx.fcx.schedule_drop_mem(scope, scratch, ty);
|
|
|
|
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock::new(bcx, Datum::new(scratch, ty, Lvalue))
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Allocates temporary space on the stack using alloca() and returns a by-ref Datum pointing to
|
|
|
|
/// it. If `zero` is true, the space will be zeroed when it is allocated; this is normally not
|
|
|
|
/// necessary, but in the case of automatic rooting in match statements it is possible to have
|
|
|
|
/// temporaries that may not get initialized if a certain arm is not taken, so we must zero them.
|
|
|
|
/// You must arrange any cleanups etc yourself!
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn rvalue_scratch_datum<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
|
|
ty: Ty<'tcx>,
|
|
|
|
name: &str)
|
|
|
|
-> Datum<'tcx, Rvalue> {
|
2012-09-07 09:17:27 -07:00
|
|
|
let llty = type_of::type_of(bcx.ccx(), ty);
|
Improve usage of lifetime intrinsics in match expressions
The allocas used in match expression currently don't get good lifetime
markers, in fact they only get lifetime start markers, because their
lifetimes don't match to cleanup scopes.
While the bindings themselves are bog standard and just need a matching
pair of start and end markers, they might need them twice, once for a
guard clause and once for the match body.
The __llmatch alloca OTOH needs a single lifetime start marker, but
when there's a guard clause, it needs two end markers, because its
lifetime ends either when the guard doesn't match or after the match
body.
With these intrinsics in place, LLVM can now, for example, optimize
code like this:
````rust
enum E {
A1(int),
A2(int),
A3(int),
A4(int),
}
pub fn variants(x: E) {
match x {
A1(m) => bar(&m),
A2(m) => bar(&m),
A3(m) => bar(&m),
A4(m) => bar(&m),
}
}
````
To a single call to bar, using only a single stack slot. It still fails
to eliminate some of checks.
````gas
.Ltmp5:
.cfi_def_cfa_offset 16
movb (%rdi), %al
testb %al, %al
je .LBB3_5
movzbl %al, %eax
cmpl $1, %eax
je .LBB3_5
cmpl $2, %eax
.LBB3_5:
movq 8(%rdi), %rax
movq %rax, (%rsp)
leaq (%rsp), %rdi
callq _ZN3bar20hcb7a0d8be8e17e37daaE@PLT
popq %rax
retq
````
2014-07-23 17:39:13 +02:00
|
|
|
let scratch = alloca(bcx, llty, name);
|
2014-05-28 20:36:05 +01:00
|
|
|
Datum::new(scratch, ty, Rvalue::new(ByRef))
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Indicates the "appropriate" mode for this value, which is either by ref or by value, depending
|
|
|
|
/// on whether type is immediate or not.
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn appropriate_rvalue_mode<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
|
|
ty: Ty<'tcx>) -> RvalueMode {
|
2014-06-11 17:18:57 +12:00
|
|
|
if type_is_immediate(ccx, ty) {
|
2012-09-20 12:29:15 -07:00
|
|
|
ByValue
|
|
|
|
} else {
|
2014-01-15 14:39:08 -05:00
|
|
|
ByRef
|
2012-09-20 12:29:15 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn add_rvalue_clean<'a, 'tcx>(mode: RvalueMode,
|
|
|
|
fcx: &FunctionContext<'a, 'tcx>,
|
|
|
|
scope: cleanup::ScopeId,
|
|
|
|
val: ValueRef,
|
|
|
|
ty: Ty<'tcx>) {
|
2014-01-15 14:39:08 -05:00
|
|
|
match mode {
|
|
|
|
ByValue => { fcx.schedule_drop_immediate(scope, val, ty); }
|
Emit LLVM lifetime intrinsics to improve stack usage and codegen in general
Lifetime intrinsics help to reduce stack usage, because LLVM can apply
stack coloring to reuse the stack slots of dead allocas for new ones.
For example these functions now both use the same amount of stack, while
previous `bar()` used five times as much as `foo()`:
````rust
fn foo() {
println("{}", 5);
}
fn bar() {
println("{}", 5);
println("{}", 5);
println("{}", 5);
println("{}", 5);
println("{}", 5);
}
````
On top of that, LLVM can also optimize out certain operations when it
knows that memory is dead after a certain point. For example, it can
sometimes remove the zeroing used to cancel the drop glue. This is
possible when the glue drop itself was already removed because the
zeroing dominated the drop glue call. For example in:
````rust
pub fn bar(x: (Box<int>, int)) -> (Box<int>, int) {
x
}
````
With optimizations, this currently results in:
````llvm
define void @_ZN3bar20h330fa42547df8179niaE({ i64*, i64 }* noalias nocapture nonnull sret, { i64*, i64 }* noalias nocapture nonnull) unnamed_addr #0 {
"_ZN29_$LP$Box$LT$int$GT$$C$int$RP$39glue_drop.$x22glue_drop$x22$LP$1347$RP$17h88cf42702e5a322aE.exit":
%2 = bitcast { i64*, i64 }* %1 to i8*
%3 = bitcast { i64*, i64 }* %0 to i8*
tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %3, i8* %2, i64 16, i32 8, i1 false)
tail call void @llvm.memset.p0i8.i64(i8* %2, i8 0, i64 16, i32 8, i1 false)
ret void
}
````
But with lifetime intrinsics we get:
````llvm
define void @_ZN3bar20h330fa42547df8179niaE({ i64*, i64 }* noalias nocapture nonnull sret, { i64*, i64 }* noalias nocapture nonnull) unnamed_addr #0 {
"_ZN29_$LP$Box$LT$int$GT$$C$int$RP$39glue_drop.$x22glue_drop$x22$LP$1347$RP$17h88cf42702e5a322aE.exit":
%2 = bitcast { i64*, i64 }* %1 to i8*
%3 = bitcast { i64*, i64 }* %0 to i8*
tail call void @llvm.memcpy.p0i8.p0i8.i64(i8* %3, i8* %2, i64 16, i32 8, i1 false)
tail call void @llvm.lifetime.end(i64 16, i8* %2)
ret void
}
````
Fixes #15665
2014-05-01 19:32:07 +02:00
|
|
|
ByRef => {
|
|
|
|
fcx.schedule_lifetime_end(scope, val);
|
|
|
|
fcx.schedule_drop_mem(scope, val, ty);
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
pub trait KindOps {
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// Take appropriate action after the value in `datum` has been
|
|
|
|
/// stored to a new location.
|
2014-09-06 19:13:04 +03:00
|
|
|
fn post_store<'blk, 'tcx>(&self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
val: ValueRef,
|
2014-09-29 22:11:30 +03:00
|
|
|
ty: Ty<'tcx>)
|
2014-09-06 19:13:04 +03:00
|
|
|
-> Block<'blk, 'tcx>;
|
2014-01-15 14:39:08 -05:00
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// True if this mode is a reference mode, meaning that the datum's
|
|
|
|
/// val field is a pointer to the actual value
|
2014-01-15 14:39:08 -05:00
|
|
|
fn is_by_ref(&self) -> bool;
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// Converts to an Expr kind
|
2014-01-15 14:39:08 -05:00
|
|
|
fn to_expr_kind(self) -> Expr;
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-09-07 12:06:42 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
impl KindOps for Rvalue {
|
2014-09-06 19:13:04 +03:00
|
|
|
fn post_store<'blk, 'tcx>(&self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
_val: ValueRef,
|
2014-09-29 22:11:30 +03:00
|
|
|
_ty: Ty<'tcx>)
|
2014-09-06 19:13:04 +03:00
|
|
|
-> Block<'blk, 'tcx> {
|
2014-01-15 14:39:08 -05:00
|
|
|
// No cleanup is scheduled for an rvalue, so we don't have
|
|
|
|
// to do anything after a move to cancel or duplicate it.
|
|
|
|
bcx
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
fn is_by_ref(&self) -> bool {
|
|
|
|
self.mode == ByRef
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
fn to_expr_kind(self) -> Expr {
|
|
|
|
RvalueExpr(self)
|
|
|
|
}
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
impl KindOps for Lvalue {
|
2014-11-25 21:17:11 -05:00
|
|
|
/// If an lvalue is moved, we must zero out the memory in which it resides so as to cancel
|
|
|
|
/// cleanup. If an @T lvalue is copied, we must increment the reference count.
|
2014-09-06 19:13:04 +03:00
|
|
|
fn post_store<'blk, 'tcx>(&self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
val: ValueRef,
|
2014-09-29 22:11:30 +03:00
|
|
|
ty: Ty<'tcx>)
|
2014-09-06 19:13:04 +03:00
|
|
|
-> Block<'blk, 'tcx> {
|
2014-12-16 15:00:05 -05:00
|
|
|
if type_needs_drop(bcx.tcx(), ty) {
|
2014-10-01 01:26:04 +03:00
|
|
|
// cancel cleanup of affine values by zeroing out
|
|
|
|
let () = zero_mem(bcx, val, ty);
|
|
|
|
bcx
|
2014-01-15 14:39:08 -05:00
|
|
|
} else {
|
|
|
|
bcx
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
fn is_by_ref(&self) -> bool {
|
|
|
|
true
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
fn to_expr_kind(self) -> Expr {
|
|
|
|
LvalueExpr
|
|
|
|
}
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
impl KindOps for Expr {
|
2014-09-06 19:13:04 +03:00
|
|
|
fn post_store<'blk, 'tcx>(&self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
val: ValueRef,
|
2014-09-29 22:11:30 +03:00
|
|
|
ty: Ty<'tcx>)
|
2014-09-06 19:13:04 +03:00
|
|
|
-> Block<'blk, 'tcx> {
|
2014-01-15 14:39:08 -05:00
|
|
|
match *self {
|
|
|
|
LvalueExpr => Lvalue.post_store(bcx, val, ty),
|
|
|
|
RvalueExpr(ref r) => r.post_store(bcx, val, ty),
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
fn is_by_ref(&self) -> bool {
|
|
|
|
match *self {
|
|
|
|
LvalueExpr => Lvalue.is_by_ref(),
|
|
|
|
RvalueExpr(ref r) => r.is_by_ref()
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
fn to_expr_kind(self) -> Expr {
|
|
|
|
self
|
|
|
|
}
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
impl<'tcx> Datum<'tcx, Rvalue> {
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Schedules a cleanup for this datum in the given scope. That means that this datum is no
|
|
|
|
/// longer an rvalue datum; hence, this function consumes the datum and returns the contained
|
|
|
|
/// ValueRef.
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn add_clean<'a>(self,
|
|
|
|
fcx: &FunctionContext<'a, 'tcx>,
|
|
|
|
scope: cleanup::ScopeId)
|
|
|
|
-> ValueRef {
|
2014-01-15 14:39:08 -05:00
|
|
|
add_rvalue_clean(self.kind.mode, fcx, scope, self.val, self.ty);
|
|
|
|
self.val
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Returns an lvalue datum (that is, a by ref datum with cleanup scheduled). If `self` is not
|
|
|
|
/// already an lvalue, cleanup will be scheduled in the temporary scope for `expr_id`.
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_lvalue_datum_in_scope<'blk>(self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
name: &str,
|
|
|
|
scope: cleanup::ScopeId)
|
|
|
|
-> DatumBlock<'blk, 'tcx, Lvalue> {
|
2014-01-15 14:39:08 -05:00
|
|
|
let fcx = bcx.fcx;
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
match self.kind.mode {
|
|
|
|
ByRef => {
|
|
|
|
add_rvalue_clean(ByRef, fcx, scope, self.val, self.ty);
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock::new(bcx, Datum::new(self.val, self.ty, Lvalue))
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
|
|
|
|
ByValue => {
|
|
|
|
lvalue_scratch_datum(
|
|
|
|
bcx, self.ty, name, false, scope, self,
|
|
|
|
|this, bcx, llval| this.store_to(bcx, llval))
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_ref_datum<'blk>(self, bcx: Block<'blk, 'tcx>)
|
|
|
|
-> DatumBlock<'blk, 'tcx, Rvalue> {
|
2014-01-15 14:39:08 -05:00
|
|
|
let mut bcx = bcx;
|
|
|
|
match self.kind.mode {
|
2014-05-28 20:36:05 +01:00
|
|
|
ByRef => DatumBlock::new(bcx, self),
|
2014-01-15 14:39:08 -05:00
|
|
|
ByValue => {
|
|
|
|
let scratch = rvalue_scratch_datum(bcx, self.ty, "to_ref");
|
|
|
|
bcx = self.store_to(bcx, scratch.val);
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock::new(bcx, scratch)
|
2013-05-29 15:49:23 -04:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_appropriate_datum<'blk>(self, bcx: Block<'blk, 'tcx>)
|
|
|
|
-> DatumBlock<'blk, 'tcx, Rvalue> {
|
2014-01-15 14:39:08 -05:00
|
|
|
match self.appropriate_rvalue_mode(bcx.ccx()) {
|
|
|
|
ByRef => {
|
|
|
|
self.to_ref_datum(bcx)
|
|
|
|
}
|
|
|
|
ByValue => {
|
|
|
|
match self.kind.mode {
|
2014-05-28 20:36:05 +01:00
|
|
|
ByValue => DatumBlock::new(bcx, self),
|
2014-01-15 14:39:08 -05:00
|
|
|
ByRef => {
|
2014-07-05 21:47:14 +02:00
|
|
|
let llval = load_ty(bcx, self.val, self.ty);
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock::new(bcx, Datum::new(llval, self.ty, Rvalue::new(ByValue)))
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// Methods suitable for "expr" datums that could be either lvalues or
|
|
|
|
/// rvalues. These include coercions into lvalues/rvalues but also a number
|
|
|
|
/// of more general operations. (Some of those operations could be moved to
|
|
|
|
/// the more general `impl<K> Datum<K>`, but it's convenient to have them
|
|
|
|
/// here since we can `match self.kind` rather than having to implement
|
|
|
|
/// generic methods in `KindOps`.)
|
2014-09-29 22:11:30 +03:00
|
|
|
impl<'tcx> Datum<'tcx, Expr> {
|
2014-12-09 13:44:51 -05:00
|
|
|
fn match_kind<R, F, G>(self, if_lvalue: F, if_rvalue: G) -> R where
|
|
|
|
F: FnOnce(Datum<'tcx, Lvalue>) -> R,
|
|
|
|
G: FnOnce(Datum<'tcx, Rvalue>) -> R,
|
|
|
|
{
|
2014-01-15 14:39:08 -05:00
|
|
|
let Datum { val, ty, kind } = self;
|
|
|
|
match kind {
|
2014-05-28 20:36:05 +01:00
|
|
|
LvalueExpr => if_lvalue(Datum::new(val, ty, Lvalue)),
|
|
|
|
RvalueExpr(r) => if_rvalue(Datum::new(val, ty, r)),
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Asserts that this datum *is* an lvalue and returns it.
|
2014-04-01 10:29:37 -04:00
|
|
|
#[allow(dead_code)] // potentially useful
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn assert_lvalue(self, bcx: Block) -> Datum<'tcx, Lvalue> {
|
2014-01-15 14:39:08 -05:00
|
|
|
self.match_kind(
|
|
|
|
|d| d,
|
|
|
|
|_| bcx.sess().bug("assert_lvalue given rvalue"))
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn store_to_dest<'blk>(self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
dest: expr::Dest,
|
|
|
|
expr_id: ast::NodeId)
|
|
|
|
-> Block<'blk, 'tcx> {
|
2014-01-15 14:39:08 -05:00
|
|
|
match dest {
|
|
|
|
expr::Ignore => {
|
|
|
|
self.add_clean_if_rvalue(bcx, expr_id);
|
|
|
|
bcx
|
|
|
|
}
|
|
|
|
expr::SaveIn(addr) => {
|
|
|
|
self.store_to(bcx, addr)
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Arranges cleanup for `self` if it is an rvalue. Use when you are done working with a value
|
|
|
|
/// that may need drop.
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn add_clean_if_rvalue<'blk>(self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
expr_id: ast::NodeId) {
|
2014-01-15 14:39:08 -05:00
|
|
|
self.match_kind(
|
|
|
|
|_| { /* Nothing to do, cleanup already arranged */ },
|
|
|
|
|r| {
|
|
|
|
let scope = cleanup::temporary_scope(bcx.tcx(), expr_id);
|
|
|
|
r.add_clean(bcx.fcx, scope);
|
|
|
|
})
|
2012-09-06 15:21:42 -07:00
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Ensures that `self` will get cleaned up, if it is not an lvalue already.
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn clean<'blk>(self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
name: &'static str,
|
|
|
|
expr_id: ast::NodeId)
|
|
|
|
-> Block<'blk, 'tcx> {
|
2014-01-15 14:39:08 -05:00
|
|
|
self.to_lvalue_datum(bcx, name, expr_id).bcx
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_lvalue_datum<'blk>(self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
name: &str,
|
|
|
|
expr_id: ast::NodeId)
|
|
|
|
-> DatumBlock<'blk, 'tcx, Lvalue> {
|
2014-09-01 16:14:56 +12:00
|
|
|
debug!("to_lvalue_datum self: {}", self.to_string(bcx.ccx()));
|
|
|
|
|
2014-12-18 09:26:10 -05:00
|
|
|
assert!(lltype_is_sized(bcx.tcx(), self.ty),
|
DST coercions and DST structs
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 14:20:11 +02:00
|
|
|
"Trying to convert unsized value to lval");
|
2014-01-15 14:39:08 -05:00
|
|
|
self.match_kind(
|
2014-05-28 20:36:05 +01:00
|
|
|
|l| DatumBlock::new(bcx, l),
|
2014-01-15 14:39:08 -05:00
|
|
|
|r| {
|
|
|
|
let scope = cleanup::temporary_scope(bcx.tcx(), expr_id);
|
|
|
|
r.to_lvalue_datum_in_scope(bcx, name, scope)
|
|
|
|
})
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Ensures that we have an rvalue datum (that is, a datum with no cleanup scheduled).
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_rvalue_datum<'blk>(self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
name: &'static str)
|
|
|
|
-> DatumBlock<'blk, 'tcx, Rvalue> {
|
2014-01-15 14:39:08 -05:00
|
|
|
self.match_kind(
|
|
|
|
|l| {
|
2014-02-07 14:43:05 -05:00
|
|
|
let mut bcx = bcx;
|
2014-01-15 14:39:08 -05:00
|
|
|
match l.appropriate_rvalue_mode(bcx.ccx()) {
|
|
|
|
ByRef => {
|
|
|
|
let scratch = rvalue_scratch_datum(bcx, l.ty, name);
|
|
|
|
bcx = l.store_to(bcx, scratch.val);
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock::new(bcx, scratch)
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
ByValue => {
|
2014-07-05 21:47:14 +02:00
|
|
|
let v = load_ty(bcx, l.val, l.ty);
|
2014-01-23 16:51:54 +02:00
|
|
|
bcx = l.kind.post_store(bcx, l.val, l.ty);
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock::new(bcx, Datum::new(v, l.ty, Rvalue::new(ByValue)))
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
},
|
2014-05-28 20:36:05 +01:00
|
|
|
|r| DatumBlock::new(bcx, r))
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// Methods suitable only for lvalues. These include the various
|
|
|
|
/// operations to extract components out of compound data structures,
|
|
|
|
/// such as extracting the field from a struct or a particular element
|
|
|
|
/// from an array.
|
2014-09-29 22:11:30 +03:00
|
|
|
impl<'tcx> Datum<'tcx, Lvalue> {
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Converts a datum into a by-ref value. The datum type must be one which is always passed by
|
|
|
|
/// reference.
|
2014-01-15 14:39:08 -05:00
|
|
|
pub fn to_llref(self) -> ValueRef {
|
|
|
|
self.val
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
DST coercions and DST structs
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 14:20:11 +02:00
|
|
|
// Extracts a component of a compound data structure (e.g., a field from a
|
|
|
|
// struct). Note that if self is an opened, unsized type then the returned
|
|
|
|
// datum may also be unsized _without the size information_. It is the
|
|
|
|
// callers responsibility to package the result in some way to make a valid
|
|
|
|
// datum in that case (e.g., by making a fat pointer or opened pair).
|
2014-12-09 13:44:51 -05:00
|
|
|
pub fn get_element<'blk, F>(&self, bcx: Block<'blk, 'tcx>, ty: Ty<'tcx>,
|
|
|
|
gep: F)
|
|
|
|
-> Datum<'tcx, Lvalue> where
|
|
|
|
F: FnOnce(ValueRef) -> ValueRef,
|
|
|
|
{
|
2014-10-31 10:51:16 +02:00
|
|
|
let val = match self.ty.sty {
|
2014-12-18 09:26:10 -05:00
|
|
|
_ if type_is_sized(bcx.tcx(), self.ty) => gep(self.val),
|
DST coercions and DST structs
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 14:20:11 +02:00
|
|
|
ty::ty_open(_) => {
|
|
|
|
let base = Load(bcx, expr::get_dataptr(bcx, self.val));
|
|
|
|
gep(base)
|
|
|
|
}
|
|
|
|
_ => bcx.tcx().sess.bug(
|
2015-01-07 11:58:31 -05:00
|
|
|
&format!("Unexpected unsized type in get_element: {}",
|
|
|
|
bcx.ty_to_string(self.ty))[])
|
DST coercions and DST structs
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 14:20:11 +02:00
|
|
|
};
|
2014-01-15 14:39:08 -05:00
|
|
|
Datum {
|
DST coercions and DST structs
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
2014-08-04 14:20:11 +02:00
|
|
|
val: val,
|
2014-01-15 14:39:08 -05:00
|
|
|
kind: Lvalue,
|
|
|
|
ty: ty,
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-06 19:13:04 +03:00
|
|
|
pub fn get_vec_base_and_len(&self, bcx: Block) -> (ValueRef, ValueRef) {
|
2014-02-02 02:53:54 +11:00
|
|
|
//! Converts a vector into the slice pair.
|
2013-10-16 12:04:51 -04:00
|
|
|
|
2014-01-15 14:39:08 -05:00
|
|
|
tvec::get_base_and_len(bcx, self.val, self.ty)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// Generic methods applicable to any sort of datum.
|
2014-09-29 22:11:30 +03:00
|
|
|
impl<'tcx, K: KindOps + fmt::Show> Datum<'tcx, K> {
|
|
|
|
pub fn new(val: ValueRef, ty: Ty<'tcx>, kind: K) -> Datum<'tcx, K> {
|
2014-05-28 20:36:05 +01:00
|
|
|
Datum { val: val, ty: ty, kind: kind }
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_expr_datum(self) -> Datum<'tcx, Expr> {
|
2014-01-15 14:39:08 -05:00
|
|
|
let Datum { val, ty, kind } = self;
|
|
|
|
Datum { val: val, ty: ty, kind: kind.to_expr_kind() }
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Moves or copies this value into a new home, as appropriate depending on the type of the
|
|
|
|
/// datum. This method consumes the datum, since it would be incorrect to go on using the datum
|
|
|
|
/// if the value represented is affine (and hence the value is moved).
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn store_to<'blk>(self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
dst: ValueRef)
|
|
|
|
-> Block<'blk, 'tcx> {
|
2014-10-01 01:26:04 +03:00
|
|
|
self.shallow_copy_raw(bcx, dst);
|
2014-01-15 14:39:08 -05:00
|
|
|
|
|
|
|
self.kind.post_store(bcx, self.val, self.ty)
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Helper function that performs a shallow copy of this value into `dst`, which should be a
|
|
|
|
/// pointer to a memory location suitable for `self.ty`. `dst` should contain uninitialized
|
|
|
|
/// memory (either newly allocated, zeroed, or dropped).
|
|
|
|
///
|
|
|
|
/// This function is private to datums because it leaves memory in an unstable state, where the
|
|
|
|
/// source value has been copied but not zeroed. Public methods are `store_to` (if you no
|
|
|
|
/// longer need the source value) or `shallow_copy` (if you wish the source value to remain
|
|
|
|
/// valid).
|
2014-09-29 22:11:30 +03:00
|
|
|
fn shallow_copy_raw<'blk>(&self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
dst: ValueRef)
|
|
|
|
-> Block<'blk, 'tcx> {
|
2014-01-15 14:39:08 -05:00
|
|
|
let _icx = push_ctxt("copy_to_no_check");
|
|
|
|
|
2014-01-16 19:10:17 -05:00
|
|
|
if type_is_zero_size(bcx.ccx(), self.ty) {
|
2014-01-15 14:39:08 -05:00
|
|
|
return bcx;
|
|
|
|
}
|
|
|
|
|
|
|
|
if self.kind.is_by_ref() {
|
|
|
|
memcpy_ty(bcx, dst, self.val, self.ty);
|
|
|
|
} else {
|
2014-07-05 21:47:14 +02:00
|
|
|
store_ty(bcx, self.val, dst, self.ty);
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
return bcx;
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Copies the value into a new location. This function always preserves the existing datum as
|
|
|
|
/// a valid value. Therefore, it does not consume `self` and, also, cannot be applied to affine
|
|
|
|
/// values (since they must never be duplicated).
|
2014-12-11 04:16:11 -05:00
|
|
|
pub fn shallow_copy<'blk>(&self,
|
|
|
|
bcx: Block<'blk, 'tcx>,
|
|
|
|
dst: ValueRef)
|
|
|
|
-> Block<'blk, 'tcx> {
|
librustc: Make `Copy` opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
2014-12-05 17:01:33 -08:00
|
|
|
/*!
|
|
|
|
* Copies the value into a new location. This function always
|
|
|
|
* preserves the existing datum as a valid value. Therefore,
|
|
|
|
* it does not consume `self` and, also, cannot be applied to
|
|
|
|
* affine values (since they must never be duplicated).
|
|
|
|
*/
|
|
|
|
|
2015-01-02 04:01:30 -05:00
|
|
|
assert!(!ty::type_moves_by_default(&ty::empty_parameter_environment(bcx.tcx()),
|
|
|
|
DUMMY_SP,
|
|
|
|
self.ty));
|
2014-10-01 01:26:04 +03:00
|
|
|
self.shallow_copy_raw(bcx, dst)
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
|
2014-04-01 10:29:37 -04:00
|
|
|
#[allow(dead_code)] // useful for debugging
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_string<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> String {
|
2014-12-20 00:09:35 -08:00
|
|
|
format!("Datum({}, {}, {:?})",
|
2014-09-05 09:18:53 -07:00
|
|
|
ccx.tn().val_to_string(self.val),
|
2014-06-21 03:39:03 -07:00
|
|
|
ty_to_string(ccx.tcx(), self.ty),
|
2014-05-27 20:44:58 -07:00
|
|
|
self.kind)
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
|
|
|
|
2014-11-26 11:17:23 -08:00
|
|
|
/// See the `appropriate_rvalue_mode()` function
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn appropriate_rvalue_mode<'a>(&self, ccx: &CrateContext<'a, 'tcx>)
|
|
|
|
-> RvalueMode {
|
2014-01-15 14:39:08 -05:00
|
|
|
appropriate_rvalue_mode(ccx, self.ty)
|
2013-10-16 12:04:51 -04:00
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Converts `self` into a by-value `ValueRef`. Consumes this datum (i.e., absolves you of
|
|
|
|
/// responsibility to cleanup the value). For this to work, the value must be something
|
|
|
|
/// scalar-ish (like an int or a pointer) which (1) does not require drop glue and (2) is
|
|
|
|
/// naturally passed around by value, and not by reference.
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_llscalarish<'blk>(self, bcx: Block<'blk, 'tcx>) -> ValueRef {
|
2014-12-16 15:00:05 -05:00
|
|
|
assert!(!type_needs_drop(bcx.tcx(), self.ty));
|
2014-01-15 14:39:08 -05:00
|
|
|
assert!(self.appropriate_rvalue_mode(bcx.ccx()) == ByValue);
|
|
|
|
if self.kind.is_by_ref() {
|
2014-07-05 21:47:14 +02:00
|
|
|
load_ty(bcx, self.val, self.ty)
|
2014-01-15 14:39:08 -05:00
|
|
|
} else {
|
|
|
|
self.val
|
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn to_llbool<'blk>(self, bcx: Block<'blk, 'tcx>) -> ValueRef {
|
2014-11-14 09:18:10 -08:00
|
|
|
assert!(ty::type_is_bool(self.ty));
|
2014-03-16 09:29:05 +01:00
|
|
|
self.to_llscalarish(bcx)
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-09-06 19:13:04 +03:00
|
|
|
impl<'blk, 'tcx, K> DatumBlock<'blk, 'tcx, K> {
|
2014-09-29 22:11:30 +03:00
|
|
|
pub fn new(bcx: Block<'blk, 'tcx>, datum: Datum<'tcx, K>)
|
|
|
|
-> DatumBlock<'blk, 'tcx, K> {
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock { bcx: bcx, datum: datum }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-10-15 02:25:34 -04:00
|
|
|
impl<'blk, 'tcx, K: KindOps + fmt::Show> DatumBlock<'blk, 'tcx, K> {
|
2014-09-06 19:13:04 +03:00
|
|
|
pub fn to_expr_datumblock(self) -> DatumBlock<'blk, 'tcx, Expr> {
|
2014-05-28 20:36:05 +01:00
|
|
|
DatumBlock::new(self.bcx, self.datum.to_expr_datum())
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
|
2014-09-06 19:13:04 +03:00
|
|
|
impl<'blk, 'tcx> DatumBlock<'blk, 'tcx, Expr> {
|
2014-01-15 14:39:08 -05:00
|
|
|
pub fn store_to_dest(self,
|
|
|
|
dest: expr::Dest,
|
2014-09-06 19:13:04 +03:00
|
|
|
expr_id: ast::NodeId) -> Block<'blk, 'tcx> {
|
2014-01-15 14:39:08 -05:00
|
|
|
let DatumBlock { bcx, datum } = self;
|
|
|
|
datum.store_to_dest(bcx, dest, expr_id)
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|
|
|
|
|
2014-09-06 19:13:04 +03:00
|
|
|
pub fn to_llbool(self) -> Result<'blk, 'tcx> {
|
2014-01-15 14:39:08 -05:00
|
|
|
let DatumBlock { datum, bcx } = self;
|
2014-05-03 23:14:56 +12:00
|
|
|
Result::new(bcx, datum.to_llbool(bcx))
|
2014-01-15 14:39:08 -05:00
|
|
|
}
|
2012-08-28 15:54:45 -07:00
|
|
|
}
|