rust/src/libcore/cell.rs

495 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2014-05-18 23:47:51 -05:00
//! Sharable mutable containers.
//!
//! Values of the `Cell` and `RefCell` types may be mutated through
//! shared references (i.e. the common `&T` type), whereas most Rust
//! types can only be mutated through unique (`&mut T`) references. We
//! say that `Cell` and `RefCell` provide *interior mutability*, in
//! contrast with typical Rust types that exhibit *inherited
//! mutability*.
//!
//! Cell types come in two flavors: `Cell` and `RefCell`. `Cell`
//! provides `get` and `set` methods that change the
//! interior value with a single method call. `Cell` though is only
//! compatible with types that implement `Copy`. For other types,
//! one must use the `RefCell` type, acquiring a write lock before
//! mutating.
//!
//! `RefCell` uses Rust's lifetimes to implement *dynamic borrowing*,
//! a process whereby one can claim temporary, exclusive, mutable
//! access to the inner value. Borrows for `RefCell`s are tracked *at
//! runtime*, unlike Rust's native reference types which are entirely
//! tracked statically, at compile time. Because `RefCell` borrows are
//! dynamic it is possible to attempt to borrow a value that is
//! already mutably borrowed; when this happens it results in task
//! failure.
//!
//! # When to choose interior mutability
//!
//! The more common inherited mutability, where one must have unique
//! access to mutate a value, is one of the key language elements that
//! enables Rust to reason strongly about pointer aliasing, statically
//! preventing crash bugs. Because of that, inherited mutability is
//! preferred, and interior mutability is something of a last
//! resort. Since cell types enable mutation where it would otherwise
//! be disallowed though, there are occassions when interior
//! mutability might be appropriate, or even *must* be used, e.g.
//!
//! * Introducing inherited mutability roots to shared types.
//! * Implementation details of logically-immutable methods.
//! * Mutating implementations of `clone`.
//!
//! ## Introducing inherited mutability roots to shared types
//!
//! Shared smart pointer types, including `Rc` and `Arc`, provide
//! containers that can be cloned and shared between multiple parties.
//! Because the contained values may be multiply-aliased, they can
//! only be borrowed as shared references, not mutable references.
//! Without cells then it would be impossible to mutate data inside of
//! shared boxes at all!
//!
//! It's very common then to put a `RefCell` inside shared pointer
//! types to reintroduce mutability:
//!
//! ```
//! extern crate collections;
//!
//! use collections::HashMap;
//! use std::cell::RefCell;
//! use std::rc::Rc;
//!
//! fn main() {
//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
//! shared_map.borrow_mut().insert("africa", 92388);
//! shared_map.borrow_mut().insert("kyoto", 11837);
//! shared_map.borrow_mut().insert("piccadilly", 11826);
//! shared_map.borrow_mut().insert("marbles", 38);
//! }
//! ```
//!
//! ## Implementation details of logically-immutable methods
//!
//! Occasionally it may be desirable not to expose in an API that
//! there is mutation happening "under the hood". This may be because
//! logically the operation is immutable, but e.g. caching forces the
//! implementation to perform mutation; or because you must employ
//! mutation to implement a trait method that was originally defined
//! to take `&self`.
//!
//! ```
//! extern crate collections;
//!
//! use collections::HashMap;
//! use std::cell::RefCell;
//!
//! struct Graph {
//! edges: HashMap<uint, uint>,
//! span_tree_cache: RefCell<Option<Vec<(uint, uint)>>>
//! }
//!
//! impl Graph {
//! fn minimum_spanning_tree(&self) -> Vec<(uint, uint)> {
//! // Create a new scope to contain the lifetime of the
//! // dynamic borrow
//! {
//! // Take a reference to the inside of cache cell
//! let mut cache = self.span_tree_cache.borrow_mut();
//! if cache.is_some() {
//! return cache.take_unwrap().clone();
//! }
//!
//! let span_tree = self.calc_span_tree();
//! *cache = Some(span_tree);
//! }
//!
//! // Recursive call to return the just-cached value.
//! // Note that if we had not let the previous borrow
//! // of the cache fall out of scope then the subsequent
//! // recursive borrow would cause a dynamic task failure.
//! // This is the major hazard of using `RefCell`.
//! self.minimum_spanning_tree()
//! }
//! # fn calc_span_tree(&self) -> Vec<(uint, uint)> { vec!() }
//! }
//! # fn main() { }
//! ```
//!
//! ## Mutating implementations of `clone`
//!
//! This is simply a special - bot common - case of the previous:
//! hiding mutability for operations that appear to be immutable.
//! The `clone` method is expected to not change the source value, and
//! is declared to take `&self`, not `&mut self`. Therefore any
//! mutation that happens in the `clone` method must use cell
//! types. For example, `Rc` maintains its reference counts within a
//! `Cell`.
//!
//! ```
//! use std::cell::Cell;
//!
//! struct Rc<T> {
//! ptr: *mut RcBox<T>
//! }
//!
//! struct RcBox<T> {
//! value: T,
//! refcount: Cell<uint>
//! }
//!
//! impl<T> Clone for Rc<T> {
//! fn clone(&self) -> Rc<T> {
//! unsafe {
//! (*self.ptr).refcount.set((*self.ptr).refcount.get() + 1);
//! Rc { ptr: self.ptr }
//! }
//! }
//! }
//! ```
//!
2014-05-20 12:40:14 -05:00
// FIXME: Explain difference between Cell and RefCell
// FIXME: Downsides to interior mutability
// FIXME: Can't be shared between threads. Dynamic borrows
// FIXME: Relationship to Atomic types and RWLock
2014-03-05 00:19:14 -06:00
use clone::Clone;
use cmp::Eq;
use kinds::{marker, Copy};
use ops::{Deref, DerefMut, Drop};
use option::{None, Option, Some};
2014-03-10 16:55:37 -05:00
use ty::Unsafe;
2013-11-21 23:30:34 -06:00
/// A mutable memory location that admits only `Copy` data.
2013-12-11 16:54:27 -06:00
pub struct Cell<T> {
2014-03-27 17:09:47 -05:00
value: Unsafe<T>,
noshare: marker::NoShare,
2013-12-11 16:54:27 -06:00
}
impl<T:Copy> Cell<T> {
2013-12-11 16:54:27 -06:00
/// Creates a new `Cell` containing the given value.
pub fn new(value: T) -> Cell<T> {
Cell {
value: Unsafe::new(value),
2014-03-21 17:48:39 -05:00
noshare: marker::NoShare,
2013-12-11 16:54:27 -06:00
}
}
/// Returns a copy of the contained value.
#[inline]
pub fn get(&self) -> T {
2014-03-10 16:55:37 -05:00
unsafe{ *self.value.get() }
2013-12-11 16:54:27 -06:00
}
/// Sets the contained value.
#[inline]
pub fn set(&self, value: T) {
unsafe {
2014-03-10 16:55:37 -05:00
*self.value.get() = value;
2013-12-11 16:54:27 -06:00
}
}
}
impl<T:Copy> Clone for Cell<T> {
fn clone(&self) -> Cell<T> {
Cell::new(self.get())
}
}
impl<T:Eq + Copy> Eq for Cell<T> {
2014-02-24 19:38:40 -06:00
fn eq(&self, other: &Cell<T>) -> bool {
self.get() == other.get()
}
}
2013-11-21 23:30:34 -06:00
/// A mutable memory location with dynamically checked borrow rules
pub struct RefCell<T> {
2014-03-27 17:09:47 -05:00
value: Unsafe<T>,
borrow: Cell<BorrowFlag>,
2014-03-27 17:09:47 -05:00
nocopy: marker::NoCopy,
noshare: marker::NoShare,
2013-11-21 23:30:34 -06:00
}
// Values [1, MAX-1] represent the number of `Ref` active
// (will not outgrow its range since `uint` is the size of the address space)
type BorrowFlag = uint;
static UNUSED: BorrowFlag = 0;
static WRITING: BorrowFlag = -1;
impl<T> RefCell<T> {
/// Create a new `RefCell` containing `value`
pub fn new(value: T) -> RefCell<T> {
RefCell {
value: Unsafe::new(value),
borrow: Cell::new(UNUSED),
nocopy: marker::NoCopy,
2014-03-21 17:48:39 -05:00
noshare: marker::NoShare,
2013-11-21 23:30:34 -06:00
}
}
/// Consumes the `RefCell`, returning the wrapped value.
pub fn unwrap(self) -> T {
debug_assert!(self.borrow.get() == UNUSED);
2014-03-10 16:55:37 -05:00
unsafe{self.value.unwrap()}
2013-11-21 23:30:34 -06:00
}
/// Attempts to immutably borrow the wrapped value.
///
/// The borrow lasts until the returned `Ref` exits scope. Multiple
/// immutable borrows can be taken out at the same time.
///
/// Returns `None` if the value is currently mutably borrowed.
pub fn try_borrow<'a>(&'a self) -> Option<Ref<'a, T>> {
match self.borrow.get() {
2013-11-21 23:30:34 -06:00
WRITING => None,
borrow => {
self.borrow.set(borrow + 1);
2013-11-21 23:30:34 -06:00
Some(Ref { parent: self })
}
}
}
/// Immutably borrows the wrapped value.
///
/// The borrow lasts until the returned `Ref` exits scope. Multiple
/// immutable borrows can be taken out at the same time.
///
/// # Failure
///
/// Fails if the value is currently mutably borrowed.
pub fn borrow<'a>(&'a self) -> Ref<'a, T> {
match self.try_borrow() {
Some(ptr) => ptr,
None => fail!("RefCell<T> already mutably borrowed")
}
}
/// Mutably borrows the wrapped value.
///
2013-12-14 23:26:09 -06:00
/// The borrow lasts until the returned `RefMut` exits scope. The value
2013-11-21 23:30:34 -06:00
/// cannot be borrowed while this borrow is active.
///
/// Returns `None` if the value is currently borrowed.
pub fn try_borrow_mut<'a>(&'a self) -> Option<RefMut<'a, T>> {
match self.borrow.get() {
UNUSED => {
self.borrow.set(WRITING);
Some(RefMut { parent: self })
2013-11-21 23:30:34 -06:00
},
_ => None
}
}
/// Mutably borrows the wrapped value.
///
2013-12-14 23:26:09 -06:00
/// The borrow lasts until the returned `RefMut` exits scope. The value
2013-11-21 23:30:34 -06:00
/// cannot be borrowed while this borrow is active.
///
/// # Failure
///
/// Fails if the value is currently borrowed.
pub fn borrow_mut<'a>(&'a self) -> RefMut<'a, T> {
match self.try_borrow_mut() {
Some(ptr) => ptr,
None => fail!("RefCell<T> already borrowed")
}
}
2013-12-11 16:54:27 -06:00
}
2013-11-21 23:30:34 -06:00
impl<T: Clone> Clone for RefCell<T> {
fn clone(&self) -> RefCell<T> {
RefCell::new(self.borrow().clone())
2013-11-21 23:30:34 -06:00
}
}
impl<T: Eq> Eq for RefCell<T> {
fn eq(&self, other: &RefCell<T>) -> bool {
*self.borrow() == *other.borrow()
2013-11-21 23:30:34 -06:00
}
}
/// Wraps a borrowed reference to a value in a `RefCell` box.
pub struct Ref<'b, T> {
2014-03-27 17:09:47 -05:00
parent: &'b RefCell<T>
2013-11-21 23:30:34 -06:00
}
#[unsafe_destructor]
impl<'b, T> Drop for Ref<'b, T> {
2013-11-21 23:30:34 -06:00
fn drop(&mut self) {
let borrow = self.parent.borrow.get();
debug_assert!(borrow != WRITING && borrow != UNUSED);
self.parent.borrow.set(borrow - 1);
2013-11-21 23:30:34 -06:00
}
}
impl<'b, T> Deref<T> for Ref<'b, T> {
#[inline]
fn deref<'a>(&'a self) -> &'a T {
unsafe { &*self.parent.value.get() }
}
}
/// Copy a `Ref`.
///
/// The `RefCell` is already immutably borrowed, so this cannot fail.
///
/// A `Clone` implementation would interfere with the widespread
/// use of `r.borrow().clone()` to clone the contents of a `RefCell`.
#[experimental]
pub fn clone_ref<'b, T>(orig: &Ref<'b, T>) -> Ref<'b, T> {
// Since this Ref exists, we know the borrow flag
// is not set to WRITING.
let borrow = orig.parent.borrow.get();
debug_assert!(borrow != WRITING && borrow != UNUSED);
orig.parent.borrow.set(borrow + 1);
Ref {
parent: orig.parent,
}
}
2013-11-21 23:30:34 -06:00
/// Wraps a mutable borrowed reference to a value in a `RefCell` box.
pub struct RefMut<'b, T> {
parent: &'b RefCell<T>
2013-11-21 23:30:34 -06:00
}
#[unsafe_destructor]
impl<'b, T> Drop for RefMut<'b, T> {
2013-11-21 23:30:34 -06:00
fn drop(&mut self) {
let borrow = self.parent.borrow.get();
debug_assert!(borrow == WRITING);
self.parent.borrow.set(UNUSED);
2013-11-21 23:30:34 -06:00
}
}
impl<'b, T> Deref<T> for RefMut<'b, T> {
#[inline]
fn deref<'a>(&'a self) -> &'a T {
unsafe { &*self.parent.value.get() }
}
}
impl<'b, T> DerefMut<T> for RefMut<'b, T> {
#[inline]
fn deref_mut<'a>(&'a mut self) -> &'a mut T {
unsafe { &mut *self.parent.value.get() }
}
}
2013-11-21 23:30:34 -06:00
#[cfg(test)]
mod test {
use super::*;
2013-12-11 16:54:27 -06:00
#[test]
fn smoketest_cell() {
let x = Cell::new(10);
assert!(x == Cell::new(10));
assert!(x.get() == 10);
2013-12-11 16:54:27 -06:00
x.set(20);
assert!(x == Cell::new(20));
assert!(x.get() == 20);
2013-12-11 16:54:27 -06:00
let y = Cell::new((30, 40));
assert!(y == Cell::new((30, 40)));
assert!(y.get() == (30, 40));
2013-12-11 16:54:27 -06:00
}
#[test]
fn cell_has_sensible_show() {
use str::StrSlice;
let x = Cell::new("foo bar");
assert!(format!("{}", x).contains(x.get()));
x.set("baz qux");
assert!(format!("{}", x).contains(x.get()));
}
2013-11-21 23:30:34 -06:00
#[test]
fn double_imm_borrow() {
let x = RefCell::new(0);
let _b1 = x.borrow();
x.borrow();
}
#[test]
fn no_mut_then_imm_borrow() {
let x = RefCell::new(0);
let _b1 = x.borrow_mut();
assert!(x.try_borrow().is_none());
}
#[test]
fn no_imm_then_borrow_mut() {
let x = RefCell::new(0);
let _b1 = x.borrow();
assert!(x.try_borrow_mut().is_none());
}
#[test]
fn no_double_borrow_mut() {
let x = RefCell::new(0);
let _b1 = x.borrow_mut();
assert!(x.try_borrow_mut().is_none());
}
#[test]
fn imm_release_borrow_mut() {
let x = RefCell::new(0);
{
let _b1 = x.borrow();
}
x.borrow_mut();
}
#[test]
fn mut_release_borrow_mut() {
let x = RefCell::new(0);
{
let _b1 = x.borrow_mut();
}
x.borrow();
}
#[test]
fn double_borrow_single_release_no_borrow_mut() {
let x = RefCell::new(0);
let _b1 = x.borrow();
{
let _b2 = x.borrow();
}
assert!(x.try_borrow_mut().is_none());
}
#[test]
#[should_fail]
fn discard_doesnt_unborrow() {
let x = RefCell::new(0);
let _b = x.borrow();
let _ = _b;
let _b = x.borrow_mut();
}
#[test]
fn clone_ref_updates_flag() {
let x = RefCell::new(0);
{
let b1 = x.borrow();
assert!(x.try_borrow_mut().is_none());
{
let _b2 = clone_ref(&b1);
assert!(x.try_borrow_mut().is_none());
}
assert!(x.try_borrow_mut().is_none());
}
assert!(x.try_borrow_mut().is_some());
}
2013-11-21 23:30:34 -06:00
}