447 lines
17 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::infer::{InferCtxt};
use middle::mem_categorization::Typer;
2015-01-03 22:42:21 -05:00
use middle::ty::{self, RegionEscape, Ty};
use std::collections::HashSet;
use std::collections::hash_map::Entry::{Occupied, Vacant};
use std::default::Default;
use syntax::ast;
use util::common::ErrorReported;
use util::ppaux::Repr;
use util::nodemap::NodeMap;
use super::CodeAmbiguity;
use super::CodeProjectionError;
use super::CodeSelectionError;
use super::FulfillmentError;
use super::ObligationCause;
use super::PredicateObligation;
use super::project;
use super::select::SelectionContext;
use super::Unimplemented;
use super::util::predicate_for_builtin_bound;
/// The fulfillment context is used to drive trait resolution. It
/// consists of a list of obligations that must be (eventually)
/// satisfied. The job is to track which are satisfied, which yielded
/// errors, and which are still pending. At any point, users can call
/// `select_where_possible`, and the fulfilment context will try to do
/// selection, retaining only those obligations that remain
/// ambiguous. This may be helpful in pushing type inference
/// along. Once all type inference constraints have been generated, the
/// method `select_all_or_error` can be used to report any remaining
/// ambiguous cases as errors.
pub struct FulfillmentContext<'tcx> {
// a simple cache that aims to cache *exact duplicate obligations*
// and avoid adding them twice. This serves a different purpose
// than the `SelectionCache`: it avoids duplicate errors and
// permits recursive obligations, which are often generated from
// traits like `Send` et al.
duplicate_set: HashSet<ty::Predicate<'tcx>>,
// A list of all obligations that have been registered with this
// fulfillment context.
predicates: Vec<PredicateObligation<'tcx>>,
// Remembers the count of trait obligations that we have already
// attempted to select. This is used to avoid repeating work
// when `select_new_obligations` is called.
attempted_mark: uint,
// A set of constraints that regionck must validate. Each
// constraint has the form `T:'a`, meaning "some type `T` must
// outlive the lifetime 'a". These constraints derive from
// instantiated type parameters. So if you had a struct defined
// like
//
// struct Foo<T:'static> { ... }
//
// then in some expression `let x = Foo { ... }` it will
// instantiate the type parameter `T` with a fresh type `$0`. At
// the same time, it will record a region obligation of
// `$0:'static`. This will get checked later by regionck. (We
// can't generally check these things right away because we have
// to wait until types are resolved.)
//
// These are stored in a map keyed to the id of the innermost
// enclosing fn body / static initializer expression. This is
// because the location where the obligation was incurred can be
// relevant with respect to which sublifetime assumptions are in
// place. The reason that we store under the fn-id, and not
// something more fine-grained, is so that it is easier for
// regionck to be sure that it has found *all* the region
// obligations (otherwise, it's easy to fail to walk to a
// particular node-id).
region_obligations: NodeMap<Vec<RegionObligation<'tcx>>>,
}
pub struct RegionObligation<'tcx> {
pub sub_region: ty::Region,
pub sup_type: Ty<'tcx>,
pub cause: ObligationCause<'tcx>,
}
impl<'tcx> FulfillmentContext<'tcx> {
pub fn new() -> FulfillmentContext<'tcx> {
FulfillmentContext {
duplicate_set: HashSet::new(),
predicates: Vec::new(),
attempted_mark: 0,
region_obligations: NodeMap::new(),
}
}
2014-12-30 08:59:33 -05:00
/// "Normalize" a projection type `<SomeType as SomeTrait>::X` by
/// creating a fresh type variable `$0` as well as a projection
/// predicate `<SomeType as SomeTrait>::X == $0`. When the
/// inference engine runs, it will attempt to find an impl of
/// `SomeTrait` or a where clause that lets us unify `$0` with
/// something concrete. If this fails, we'll unify `$0` with
/// `projection_ty` again.
pub fn normalize_projection_type<'a>(&mut self,
infcx: &InferCtxt<'a,'tcx>,
typer: &ty::UnboxedClosureTyper<'tcx>,
2014-12-30 08:59:33 -05:00
projection_ty: ty::ProjectionTy<'tcx>,
cause: ObligationCause<'tcx>)
-> Ty<'tcx>
{
2014-12-30 08:59:33 -05:00
debug!("normalize_associated_type(projection_ty={})",
projection_ty.repr(infcx.tcx));
2014-12-30 08:59:33 -05:00
assert!(!projection_ty.has_escaping_regions());
// FIXME(#20304) -- cache
let mut selcx = SelectionContext::new(infcx, typer);
let normalized = project::normalize_projection_type(&mut selcx, projection_ty, cause, 0);
for obligation in normalized.obligations.into_iter() {
self.register_predicate_obligation(infcx, obligation);
}
debug!("normalize_associated_type: result={}", normalized.value.repr(infcx.tcx));
normalized.value
}
pub fn register_builtin_bound<'a>(&mut self,
infcx: &InferCtxt<'a,'tcx>,
ty: Ty<'tcx>,
builtin_bound: ty::BuiltinBound,
cause: ObligationCause<'tcx>)
{
match predicate_for_builtin_bound(infcx.tcx, cause, builtin_bound, 0, ty) {
Ok(predicate) => {
self.register_predicate_obligation(infcx, predicate);
}
Err(ErrorReported) => { }
}
}
pub fn register_region_obligation<'a>(&mut self,
infcx: &InferCtxt<'a,'tcx>,
t_a: Ty<'tcx>,
r_b: ty::Region,
cause: ObligationCause<'tcx>)
{
register_region_obligation(infcx.tcx, t_a, r_b, cause, &mut self.region_obligations);
}
pub fn register_predicate_obligation<'a>(&mut self,
infcx: &InferCtxt<'a,'tcx>,
obligation: PredicateObligation<'tcx>)
{
// this helps to reduce duplicate errors, as well as making
// debug output much nicer to read and so on.
let obligation = infcx.resolve_type_vars_if_possible(&obligation);
if !self.duplicate_set.insert(obligation.predicate.clone()) {
debug!("register_predicate({}) -- already seen, skip", obligation.repr(infcx.tcx));
return;
}
debug!("register_predicate({})", obligation.repr(infcx.tcx));
self.predicates.push(obligation);
}
pub fn region_obligations(&self,
body_id: ast::NodeId)
-> &[RegionObligation<'tcx>]
{
match self.region_obligations.get(&body_id) {
None => Default::default(),
Some(vec) => vec.as_slice(),
}
}
pub fn select_all_or_error<'a>(&mut self,
infcx: &InferCtxt<'a,'tcx>,
typer: &ty::UnboxedClosureTyper<'tcx>)
-> Result<(),Vec<FulfillmentError<'tcx>>>
{
try!(self.select_where_possible(infcx, typer));
// Anything left is ambiguous.
let errors: Vec<FulfillmentError> =
self.predicates
.iter()
.map(|o| FulfillmentError::new((*o).clone(), CodeAmbiguity))
.collect();
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Attempts to select obligations that were registered since the call to a selection routine.
/// This is used by the type checker to eagerly attempt to resolve obligations in hopes of
/// gaining type information. It'd be equally valid to use `select_where_possible` but it
/// results in `O(n^2)` performance (#18208).
pub fn select_new_obligations<'a>(&mut self,
infcx: &InferCtxt<'a,'tcx>,
typer: &ty::UnboxedClosureTyper<'tcx>)
-> Result<(),Vec<FulfillmentError<'tcx>>>
{
let mut selcx = SelectionContext::new(infcx, typer);
self.select(&mut selcx, true)
}
pub fn select_where_possible<'a>(&mut self,
infcx: &InferCtxt<'a,'tcx>,
typer: &ty::UnboxedClosureTyper<'tcx>)
-> Result<(),Vec<FulfillmentError<'tcx>>>
{
let mut selcx = SelectionContext::new(infcx, typer);
self.select(&mut selcx, false)
}
pub fn pending_obligations(&self) -> &[PredicateObligation<'tcx>] {
self.predicates[]
}
/// Attempts to select obligations using `selcx`. If `only_new_obligations` is true, then it
/// only attempts to select obligations that haven't been seen before.
fn select<'a>(&mut self,
selcx: &mut SelectionContext<'a, 'tcx>,
only_new_obligations: bool)
-> Result<(),Vec<FulfillmentError<'tcx>>>
{
debug!("select({} obligations, only_new_obligations={}) start",
self.predicates.len(),
only_new_obligations);
let mut errors = Vec::new();
loop {
let count = self.predicates.len();
debug!("select_where_possible({} obligations) iteration",
count);
let mut new_obligations = Vec::new();
// If we are only attempting obligations we haven't seen yet,
// then set `skip` to the number of obligations we've already
// seen.
let mut skip = if only_new_obligations {
self.attempted_mark
} else {
0
};
// First pass: walk each obligation, retaining
// only those that we cannot yet process.
{
let region_obligations = &mut self.region_obligations;
self.predicates.retain(|predicate| {
// Hack: Retain does not pass in the index, but we want
// to avoid processing the first `start_count` entries.
2014-12-11 04:35:51 -05:00
let processed =
if skip == 0 {
process_predicate(selcx, predicate,
&mut new_obligations, &mut errors, region_obligations)
2014-12-11 04:35:51 -05:00
} else {
skip -= 1;
false
};
!processed
});
}
self.attempted_mark = self.predicates.len();
if self.predicates.len() == count {
// Nothing changed.
break;
}
// Now go through all the successful ones,
// registering any nested obligations for the future.
for new_obligation in new_obligations.into_iter() {
self.register_predicate_obligation(selcx.infcx(), new_obligation);
}
}
debug!("select({} obligations, {} errors) done",
self.predicates.len(),
errors.len());
if errors.len() == 0 {
Ok(())
} else {
Err(errors)
}
}
}
2014-12-11 04:35:51 -05:00
fn process_predicate<'a,'tcx>(selcx: &mut SelectionContext<'a,'tcx>,
obligation: &PredicateObligation<'tcx>,
new_obligations: &mut Vec<PredicateObligation<'tcx>>,
2014-12-11 04:35:51 -05:00
errors: &mut Vec<FulfillmentError<'tcx>>,
region_obligations: &mut NodeMap<Vec<RegionObligation<'tcx>>>)
-> bool
{
/*!
2014-12-11 04:35:51 -05:00
* Processes a predicate obligation and modifies the appropriate
* output array with the successful/error result. Returns `false`
* if the predicate could not be processed due to insufficient
* type inference.
*/
let tcx = selcx.tcx();
match obligation.predicate {
ty::Predicate::Trait(ref data) => {
let trait_obligation = obligation.with(data.clone());
match selcx.select(&trait_obligation) {
Ok(None) => {
2014-12-11 04:35:51 -05:00
false
}
Ok(Some(s)) => {
s.map_move_nested(|p| new_obligations.push(p));
2014-12-11 04:35:51 -05:00
true
}
Err(selection_err) => {
debug!("predicate: {} error: {}",
obligation.repr(tcx),
selection_err.repr(tcx));
errors.push(
FulfillmentError::new(
obligation.clone(),
CodeSelectionError(selection_err)));
2014-12-11 04:35:51 -05:00
true
}
}
}
ty::Predicate::Equate(ref binder) => {
match selcx.infcx().equality_predicate(obligation.cause.span, binder) {
Ok(()) => { }
Err(_) => {
errors.push(
FulfillmentError::new(
obligation.clone(),
CodeSelectionError(Unimplemented)));
}
}
true
}
ty::Predicate::RegionOutlives(ref binder) => {
match selcx.infcx().region_outlives_predicate(obligation.cause.span, binder) {
Ok(()) => { }
Err(_) => {
errors.push(
FulfillmentError::new(
obligation.clone(),
CodeSelectionError(Unimplemented)));
}
}
2014-12-11 04:35:51 -05:00
true
}
ty::Predicate::TypeOutlives(ref binder) => {
// For now, we just check that there are no higher-ranked
// regions. If there are, we will call this obligation an
// error. Eventually we should be able to support some
// cases here, I imagine (e.g., `for<'a> int : 'a`).
if ty::count_late_bound_regions(selcx.tcx(), binder) != 0 {
errors.push(
FulfillmentError::new(
obligation.clone(),
CodeSelectionError(Unimplemented)));
} else {
let ty::OutlivesPredicate(t_a, r_b) = binder.0;
2014-12-06 11:39:25 -05:00
register_region_obligation(tcx, t_a, r_b,
obligation.cause.clone(),
2014-12-06 11:39:25 -05:00
region_obligations);
}
2014-12-11 04:35:51 -05:00
true
}
ty::Predicate::Projection(ref data) => {
let project_obligation = obligation.with(data.clone());
let result = project::poly_project_and_unify_type(selcx, &project_obligation);
debug!("poly_project_and_unify_type({}) = {}",
project_obligation.repr(tcx),
result.repr(tcx));
match result {
Ok(Some(obligations)) => {
new_obligations.extend(obligations.into_iter());
true
}
Ok(None) => {
false
}
Err(err) => {
errors.push(
FulfillmentError::new(
obligation.clone(),
CodeProjectionError(err)));
true
}
}
}
}
}
impl<'tcx> Repr<'tcx> for RegionObligation<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("RegionObligation(sub_region={}, sup_type={})",
self.sub_region.repr(tcx),
self.sup_type.repr(tcx))
}
}
fn register_region_obligation<'tcx>(tcx: &ty::ctxt<'tcx>,
t_a: Ty<'tcx>,
r_b: ty::Region,
cause: ObligationCause<'tcx>,
region_obligations: &mut NodeMap<Vec<RegionObligation<'tcx>>>)
{
let region_obligation = RegionObligation { sup_type: t_a,
sub_region: r_b,
cause: cause };
debug!("register_region_obligation({})",
region_obligation.repr(tcx));
match region_obligations.entry(region_obligation.cause.body_id) {
Vacant(entry) => { entry.set(vec![region_obligation]); },
Occupied(mut entry) => { entry.get_mut().push(region_obligation); },
}
}