rust/src/librustc_mir/transform/const_prop.rs

930 lines
35 KiB
Rust
Raw Normal View History

2018-01-28 07:41:17 -06:00
//! Propagates constants for early reporting of statically known
//! assertion failures
use std::borrow::Cow;
use std::cell::Cell;
use rustc::hir::def::DefKind;
use rustc::hir::def_id::DefId;
use rustc::mir::{
AggregateKind, Constant, Location, Place, PlaceBase, Body, BodyCache, Operand, Local, UnOp,
2019-10-27 21:45:02 -05:00
Rvalue, StatementKind, Statement, LocalKind, TerminatorKind, Terminator, ClearCrossCrate,
SourceInfo, BinOp, SourceScope, SourceScopeData, LocalDecl, BasicBlock, ReadOnlyBodyCache,
2019-10-27 20:15:02 -05:00
read_only, RETURN_PLACE
};
use rustc::mir::visit::{
Visitor, PlaceContext, MutatingUseContext, MutVisitor, NonMutatingUseContext,
};
use rustc::mir::interpret::{Scalar, InterpResult, PanicInfo};
use rustc::ty::{self, Instance, ParamEnv, Ty, TyCtxt};
use syntax::ast::Mutability;
use syntax_pos::{Span, DUMMY_SP};
use rustc::ty::subst::InternalSubsts;
use rustc_data_structures::fx::FxHashMap;
use rustc_index::vec::IndexVec;
use rustc::ty::layout::{
LayoutOf, TyLayout, LayoutError, HasTyCtxt, TargetDataLayout, HasDataLayout, Size,
};
2018-01-28 07:41:17 -06:00
use crate::rustc::ty::subst::Subst;
2019-06-01 13:08:04 -05:00
use crate::interpret::{
self, InterpCx, ScalarMaybeUndef, Immediate, OpTy,
StackPopCleanup, LocalValue, LocalState, AllocId, Frame,
Allocation, MemoryKind, ImmTy, Pointer, Memory, PlaceTy,
Operand as InterpOperand, intern_const_alloc_recursive,
2018-11-06 09:16:27 -06:00
};
use crate::const_eval::error_to_const_error;
2019-02-07 15:28:15 -06:00
use crate::transform::{MirPass, MirSource};
/// The maximum number of bytes that we'll allocate space for a return value.
const MAX_ALLOC_LIMIT: u64 = 1024;
2018-01-28 07:41:17 -06:00
pub struct ConstProp;
2019-08-04 15:20:00 -05:00
impl<'tcx> MirPass<'tcx> for ConstProp {
2019-10-28 17:16:25 -05:00
fn run_pass(
&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut BodyCache<'tcx>
2019-10-28 17:16:25 -05:00
) {
// will be evaluated by miri and produce its errors there
if source.promoted.is_some() {
return;
}
use rustc::hir::map::blocks::FnLikeNode;
let hir_id = tcx.hir().as_local_hir_id(source.def_id())
.expect("Non-local call to local provider is_const_fn");
2019-06-20 03:39:19 -05:00
let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some();
let is_assoc_const = match tcx.def_kind(source.def_id()) {
Some(DefKind::AssocConst) => true,
_ => false,
};
// Only run const prop on functions, methods, closures and associated constants
if !is_fn_like && !is_assoc_const {
// skip anon_const/statics/consts because they'll be evaluated by miri anyway
2019-02-03 04:51:07 -06:00
trace!("ConstProp skipped for {:?}", source.def_id());
return
}
let is_generator = tcx.type_of(source.def_id()).is_generator();
// FIXME(welseywiser) const prop doesn't work on generators because of query cycles
// computing their layout.
if is_generator {
trace!("ConstProp skipped for generator {:?}", source.def_id());
return
}
2019-02-03 04:51:07 -06:00
trace!("ConstProp starting for {:?}", source.def_id());
2018-01-28 07:41:17 -06:00
let dummy_body =
&Body::new(
body.basic_blocks().clone(),
body.source_scopes.clone(),
body.local_decls.clone(),
Default::default(),
body.arg_count,
Default::default(),
tcx.def_span(source.def_id()),
Default::default(),
2019-11-25 06:58:40 -06:00
body.generator_kind,
);
2018-01-29 08:12:45 -06:00
// FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
// constants, instead of just checking for const-folding succeeding.
// That would require an uniform one-def no-mutation analysis
// and RPO (or recursing when needing the value of a local).
let mut optimization_finder = ConstPropagator::new(
read_only!(body),
dummy_body,
tcx,
source
);
optimization_finder.visit_body(body);
2018-01-28 07:41:17 -06:00
2019-02-03 04:51:07 -06:00
trace!("ConstProp done for {:?}", source.def_id());
2018-01-28 07:41:17 -06:00
}
}
struct ConstPropMachine;
impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine {
2019-09-15 11:08:09 -05:00
type MemoryKinds = !;
type PointerTag = ();
type ExtraFnVal = !;
type FrameExtra = ();
type MemoryExtra = ();
type AllocExtra = ();
type MemoryMap = FxHashMap<AllocId, (MemoryKind<!>, Allocation)>;
const STATIC_KIND: Option<!> = None;
const CHECK_ALIGN: bool = false;
#[inline(always)]
fn enforce_validity(_ecx: &InterpCx<'mir, 'tcx, Self>) -> bool {
false
}
fn find_mir_or_eval_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_instance: ty::Instance<'tcx>,
_args: &[OpTy<'tcx>],
_ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
2019-10-09 16:33:41 -05:00
_unwind: Option<BasicBlock>,
) -> InterpResult<'tcx, Option<&'mir Body<'tcx>>> {
Ok(None)
}
fn call_extra_fn(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
fn_val: !,
_args: &[OpTy<'tcx>],
_ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
_unwind: Option<BasicBlock>
) -> InterpResult<'tcx> {
match fn_val {}
}
fn call_intrinsic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_span: Span,
_instance: ty::Instance<'tcx>,
_args: &[OpTy<'tcx>],
_ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
_unwind: Option<BasicBlock>
) -> InterpResult<'tcx> {
throw_unsup!(ConstPropUnsupported("calling intrinsics isn't supported in ConstProp"));
}
fn assert_panic(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_span: Span,
_msg: &rustc::mir::interpret::AssertMessage<'tcx>,
_unwind: Option<rustc::mir::BasicBlock>,
) -> InterpResult<'tcx> {
bug!("panics terminators are not evaluated in ConstProp");
}
fn ptr_to_int(
_mem: &Memory<'mir, 'tcx, Self>,
_ptr: Pointer,
) -> InterpResult<'tcx, u64> {
throw_unsup!(ConstPropUnsupported("ptr-to-int casts aren't supported in ConstProp"));
}
fn binary_ptr_op(
_ecx: &InterpCx<'mir, 'tcx, Self>,
_bin_op: BinOp,
_left: ImmTy<'tcx>,
_right: ImmTy<'tcx>,
) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
// We can't do this because aliasing of memory can differ between const eval and llvm
throw_unsup!(ConstPropUnsupported("pointer arithmetic or comparisons aren't supported \
in ConstProp"));
}
fn find_foreign_static(
_tcx: TyCtxt<'tcx>,
_def_id: DefId,
) -> InterpResult<'tcx, Cow<'tcx, Allocation<Self::PointerTag>>> {
throw_unsup!(ReadForeignStatic)
}
#[inline(always)]
fn init_allocation_extra<'b>(
_memory_extra: &(),
_id: AllocId,
alloc: Cow<'b, Allocation>,
_kind: Option<MemoryKind<!>>,
2019-12-01 03:02:41 -06:00
) -> (Cow<'b, Allocation<Self::PointerTag>>, Self::PointerTag) {
// We do not use a tag so we can just cheaply forward the allocation
2019-12-01 03:02:41 -06:00
(alloc, ())
}
#[inline(always)]
fn tag_static_base_pointer(
_memory_extra: &(),
_id: AllocId,
) -> Self::PointerTag {
()
}
fn box_alloc(
_ecx: &mut InterpCx<'mir, 'tcx, Self>,
_dest: PlaceTy<'tcx>,
) -> InterpResult<'tcx> {
throw_unsup!(ConstPropUnsupported("can't const prop `box` keyword"));
}
fn access_local(
_ecx: &InterpCx<'mir, 'tcx, Self>,
frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
local: Local,
) -> InterpResult<'tcx, InterpOperand<Self::PointerTag>> {
let l = &frame.locals[local];
if l.value == LocalValue::Uninitialized {
throw_unsup!(ConstPropUnsupported("tried to access an uninitialized local"));
}
l.access()
}
fn before_access_static(
allocation: &Allocation<Self::PointerTag, Self::AllocExtra>,
) -> InterpResult<'tcx> {
// if the static allocation is mutable or if it has relocations (it may be legal to mutate
// the memory behind that in the future), then we can't const prop it
if allocation.mutability == Mutability::Mutable || allocation.relocations().len() > 0 {
throw_unsup!(ConstPropUnsupported("can't eval mutable statics in ConstProp"));
}
Ok(())
}
fn before_terminator(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
Ok(())
}
#[inline(always)]
fn stack_push(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
Ok(())
}
}
type Const<'tcx> = OpTy<'tcx>;
2018-01-28 07:41:17 -06:00
/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
ecx: InterpCx<'mir, 'tcx, ConstPropMachine>,
2019-06-13 16:48:52 -05:00
tcx: TyCtxt<'tcx>,
2019-02-03 04:51:07 -06:00
source: MirSource<'tcx>,
can_const_prop: IndexVec<Local, bool>,
param_env: ParamEnv<'tcx>,
// FIXME(eddyb) avoid cloning these two fields more than once,
// by accessing them through `ecx` instead.
source_scopes: IndexVec<SourceScope, SourceScopeData>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
ret: Option<OpTy<'tcx, ()>>,
2018-01-28 07:41:17 -06:00
}
impl<'mir, 'tcx> LayoutOf for ConstPropagator<'mir, 'tcx> {
2019-04-26 07:26:49 -05:00
type Ty = Ty<'tcx>;
type TyLayout = Result<TyLayout<'tcx>, LayoutError<'tcx>>;
2019-04-26 07:26:49 -05:00
fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyLayout {
self.tcx.layout_of(self.param_env.and(ty))
}
}
impl<'mir, 'tcx> HasDataLayout for ConstPropagator<'mir, 'tcx> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'mir, 'tcx> HasTyCtxt<'tcx> for ConstPropagator<'mir, 'tcx> {
#[inline]
2019-06-13 16:48:52 -05:00
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
}
impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
2018-01-28 07:41:17 -06:00
fn new(
body: ReadOnlyBodyCache<'_, 'tcx>,
dummy_body: &'mir Body<'tcx>,
2019-06-13 16:48:52 -05:00
tcx: TyCtxt<'tcx>,
2019-02-03 04:51:07 -06:00
source: MirSource<'tcx>,
) -> ConstPropagator<'mir, 'tcx> {
let def_id = source.def_id();
let param_env = tcx.param_env(def_id);
let span = tcx.def_span(def_id);
let mut ecx = InterpCx::new(tcx.at(span), param_env, ConstPropMachine, ());
let can_const_prop = CanConstProp::check(body);
let substs = &InternalSubsts::identity_for_item(tcx, def_id);
let ret =
ecx
.layout_of(body.return_ty().subst(tcx, substs))
.ok()
// Don't bother allocating memory for ZST types which have no values
// or for large values.
.filter(|ret_layout| !ret_layout.is_zst() &&
ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT))
.map(|ret_layout| ecx.allocate(ret_layout, MemoryKind::Stack));
ecx.push_stack_frame(
Instance::new(def_id, substs),
span,
dummy_body,
ret.map(Into::into),
StackPopCleanup::None {
cleanup: false,
},
).expect("failed to push initial stack frame");
ConstPropagator {
ecx,
2018-01-28 07:41:17 -06:00
tcx,
source,
param_env,
can_const_prop,
// FIXME(eddyb) avoid cloning these two fields more than once,
// by accessing them through `ecx` instead.
source_scopes: body.source_scopes.clone(),
//FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it
local_decls: body.local_decls.clone(),
ret: ret.map(Into::into),
2018-01-28 07:41:17 -06:00
}
}
fn get_const(&self, local: Local) -> Option<Const<'tcx>> {
if local == RETURN_PLACE {
// Try to read the return place as an immediate so that if it is representable as a
// scalar, we can handle it as such, but otherwise, just return the value as is.
return match self.ret.map(|ret| self.ecx.try_read_immediate(ret)) {
Some(Ok(Ok(imm))) => Some(imm.into()),
_ => self.ret,
};
}
self.ecx.access_local(self.ecx.frame(), local, None).ok()
}
2019-06-21 06:36:04 -05:00
fn remove_const(&mut self, local: Local) {
self.ecx.frame_mut().locals[local] = LocalState {
value: LocalValue::Uninitialized,
layout: Cell::new(None),
};
}
fn use_ecx<F, T>(
&mut self,
2018-06-02 16:38:57 -05:00
source_info: SourceInfo,
f: F
) -> Option<T>
where
F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
{
2018-06-02 16:38:57 -05:00
self.ecx.tcx.span = source_info.span;
// FIXME(eddyb) move this to the `Panic(_)` error case, so that
// `f(self)` is always called, and that the only difference when the
// scope's `local_data` is missing, is that the lint isn't emitted.
let lint_root = match &self.source_scopes[source_info.scope].local_data {
ClearCrossCrate::Set(data) => data.lint_root,
2018-06-02 16:38:57 -05:00
ClearCrossCrate::Clear => return None,
};
let r = match f(self) {
Ok(val) => Some(val),
Err(error) => {
use rustc::mir::interpret::{
UnsupportedOpInfo,
UndefinedBehaviorInfo,
InterpError::*
};
match error.kind {
MachineStop(_) => bug!("ConstProp does not stop"),
// Some error shouldn't come up because creating them causes
// an allocation, which we should avoid. When that happens,
// dedicated error variants should be introduced instead.
// Only test this in debug builds though to avoid disruptions.
Unsupported(UnsupportedOpInfo::Unsupported(_))
| Unsupported(UnsupportedOpInfo::ValidationFailure(_))
| UndefinedBehavior(UndefinedBehaviorInfo::Ub(_))
| UndefinedBehavior(UndefinedBehaviorInfo::UbExperimental(_))
if cfg!(debug_assertions) => {
bug!("const-prop encountered allocating error: {:?}", error.kind);
}
2019-08-01 01:43:49 -05:00
Unsupported(_)
2019-08-02 16:24:27 -05:00
| UndefinedBehavior(_)
2019-08-01 01:43:49 -05:00
| InvalidProgram(_)
| ResourceExhaustion(_) => {
// Ignore these errors.
}
2019-07-31 23:19:01 -05:00
Panic(_) => {
let diagnostic = error_to_const_error(&self.ecx, error);
diagnostic.report_as_lint(
2018-07-18 07:23:07 -05:00
self.ecx.tcx,
"this expression will panic at runtime",
lint_root,
None,
2018-07-18 07:23:07 -05:00
);
}
}
None
},
};
self.ecx.tcx.span = DUMMY_SP;
r
}
2018-06-02 16:38:57 -05:00
fn eval_constant(
&mut self,
c: &Constant<'tcx>,
) -> Option<Const<'tcx>> {
self.ecx.tcx.span = c.span;
match self.ecx.eval_const_to_op(c.literal, None) {
Ok(op) => {
Some(op)
2018-06-04 11:32:06 -05:00
},
Err(error) => {
let err = error_to_const_error(&self.ecx, error);
err.report_as_error(self.ecx.tcx, "erroneous constant used");
None
},
2018-01-28 07:41:17 -06:00
}
}
fn eval_place(&mut self, place: &Place<'tcx>, source_info: SourceInfo) -> Option<Const<'tcx>> {
trace!("eval_place(place={:?})", place);
self.use_ecx(source_info, |this| {
this.ecx.eval_place_to_op(place, None)
})
}
2018-06-02 16:38:57 -05:00
fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<Const<'tcx>> {
2018-01-28 07:41:17 -06:00
match *op {
Operand::Constant(ref c) => self.eval_constant(c),
| Operand::Move(ref place)
| Operand::Copy(ref place) => self.eval_place(place, source_info),
2018-01-28 07:41:17 -06:00
}
}
fn const_prop(
&mut self,
rvalue: &Rvalue<'tcx>,
2018-06-04 11:32:06 -05:00
place_layout: TyLayout<'tcx>,
2018-01-29 08:12:45 -06:00
source_info: SourceInfo,
place: &Place<'tcx>,
2019-10-12 07:21:51 -05:00
) -> Option<()> {
2018-01-29 08:12:45 -06:00
let span = source_info.span;
// #66397: Don't try to eval into large places as that can cause an OOM
if place_layout.size >= Size::from_bytes(MAX_ALLOC_LIMIT) {
return None;
}
let overflow_check = self.tcx.sess.overflow_checks();
// Perform any special handling for specific Rvalue types.
// Generally, checks here fall into one of two categories:
// 1. Additional checking to provide useful lints to the user
// - In this case, we will do some validation and then fall through to the
// end of the function which evals the assignment.
// 2. Working around bugs in other parts of the compiler
// - In this case, we'll return `None` from this function to stop evaluation.
2019-09-15 11:08:09 -05:00
match rvalue {
// Additional checking: if overflow checks are disabled (which is usually the case in
// release mode), then we need to do additional checking here to give lints to the user
// if an overflow would occur.
Rvalue::UnaryOp(UnOp::Neg, arg) if !overflow_check => {
2019-09-15 11:08:09 -05:00
trace!("checking UnaryOp(op = Neg, arg = {:?})", arg);
self.use_ecx(source_info, |this| {
let ty = arg.ty(&this.local_decls, this.tcx);
if ty.is_integral() {
let arg = this.ecx.eval_operand(arg, None)?;
let prim = this.ecx.read_immediate(arg)?;
// Need to do overflow check here: For actual CTFE, MIR
// generation emits code that does this before calling the op.
if prim.to_bits()? == (1 << (prim.layout.size.bits() - 1)) {
throw_panic!(OverflowNeg)
2019-09-01 11:05:38 -05:00
}
}
2019-09-15 11:08:09 -05:00
Ok(())
})?;
}
2019-09-15 11:08:09 -05:00
// Additional checking: check for overflows on integer binary operations and report
// them to the user as lints.
2019-09-15 11:08:09 -05:00
Rvalue::BinaryOp(op, left, right) => {
trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
let r = self.use_ecx(source_info, |this| {
this.ecx.read_immediate(this.ecx.eval_operand(right, None)?)
})?;
if *op == BinOp::Shr || *op == BinOp::Shl {
let left_bits = place_layout.size.bits();
let right_size = r.layout.size;
let r_bits = r.to_scalar().and_then(|r| r.to_bits(right_size));
if r_bits.ok().map_or(false, |b| b >= left_bits as u128) {
let lint_root = match &self.source_scopes[source_info.scope].local_data {
ClearCrossCrate::Set(data) => data.lint_root,
2019-09-15 11:08:09 -05:00
ClearCrossCrate::Clear => return None,
};
let dir = if *op == BinOp::Shr {
"right"
} else {
"left"
};
self.tcx.lint_hir(
::rustc::lint::builtin::EXCEEDING_BITSHIFTS,
lint_root,
2019-09-15 11:08:09 -05:00
span,
&format!("attempt to shift {} with overflow", dir));
return None;
}
}
2019-09-15 11:08:09 -05:00
// If overflow checking is enabled (like in debug mode by default),
// then we'll already catch overflow when we evaluate the `Assert` statement
// in MIR. However, if overflow checking is disabled, then there won't be any
// `Assert` statement and so we have to do additional checking here.
if !overflow_check {
self.use_ecx(source_info, |this| {
let l = this.ecx.read_immediate(this.ecx.eval_operand(left, None)?)?;
let (_, overflow, _ty) = this.ecx.overflowing_binary_op(*op, l, r)?;
if overflow {
let err = err_panic!(Overflow(*op)).into();
return Err(err);
}
Ok(())
})?;
}
2019-09-15 11:08:09 -05:00
}
// Work around: avoid ICE in miri. FIXME(wesleywiser)
// The Miri engine ICEs when taking a reference to an uninitialized unsized
// local. There's nothing it can do here: taking a reference needs an allocation
// which needs to know the size. Normally that's okay as during execution
// (e.g. for CTFE) it can never happen. But here in const_prop
// unknown data is uninitialized, so if e.g. a function argument is unsized
// and has a reference taken, we get an ICE.
Rvalue::Ref(_, _, place_ref) => {
trace!("checking Ref({:?})", place_ref);
if let Some(local) = place_ref.as_local() {
let alive =
if let LocalValue::Live(_) = self.ecx.frame().locals[local].value {
true
} else {
false
};
if !alive {
trace!("skipping Ref({:?}) to uninitialized local", place);
return None;
}
}
}
2019-09-15 11:08:09 -05:00
_ => { }
2018-01-28 07:41:17 -06:00
}
self.use_ecx(source_info, |this| {
trace!("calling eval_rvalue_into_place(rvalue = {:?}, place = {:?})", rvalue, place);
this.ecx.eval_rvalue_into_place(rvalue, place)?;
2019-10-12 07:21:51 -05:00
Ok(())
})
2018-01-28 07:41:17 -06:00
}
fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> {
Operand::Constant(Box::new(
Constant {
span,
user_ty: None,
2019-05-24 14:47:39 -05:00
literal: self.tcx.mk_const(*ty::Const::from_scalar(
self.tcx,
scalar,
ty,
))
}
))
}
2019-06-01 13:08:04 -05:00
fn replace_with_const(
&mut self,
rval: &mut Rvalue<'tcx>,
value: Const<'tcx>,
source_info: SourceInfo,
2019-06-04 05:30:36 -05:00
) {
trace!("attepting to replace {:?} with {:?}", rval, value);
if let Err(e) = self.ecx.validate_operand(
value,
vec![],
// FIXME: is ref tracking too expensive?
Some(&mut interpret::RefTracking::empty()),
) {
trace!("validation error, attempt failed: {:?}", e);
return;
}
2019-06-01 13:08:04 -05:00
// FIXME> figure out what tho do when try_read_immediate fails
let imm = self.use_ecx(source_info, |this| {
this.ecx.try_read_immediate(value)
});
2019-06-01 13:08:04 -05:00
if let Some(Ok(imm)) = imm {
2019-06-11 06:23:08 -05:00
match *imm {
interpret::Immediate::Scalar(ScalarMaybeUndef::Scalar(scalar)) => {
2019-06-01 13:08:04 -05:00
*rval = Rvalue::Use(
self.operand_from_scalar(scalar, value.layout.ty, source_info.span));
},
Immediate::ScalarPair(
ScalarMaybeUndef::Scalar(one),
ScalarMaybeUndef::Scalar(two)
) => {
2019-09-16 13:08:35 -05:00
let ty = &value.layout.ty.kind;
if let ty::Tuple(substs) = ty {
*rval = Rvalue::Aggregate(
Box::new(AggregateKind::Tuple),
vec![
2019-06-01 13:08:04 -05:00
self.operand_from_scalar(
one, substs[0].expect_ty(), source_info.span
),
self.operand_from_scalar(
two, substs[1].expect_ty(), source_info.span
),
],
);
}
},
_ => { }
}
}
}
fn should_const_prop(&mut self, op: OpTy<'tcx>) -> bool {
2019-11-24 18:09:58 -06:00
let mir_opt_level = self.tcx.sess.opts.debugging_opts.mir_opt_level;
if mir_opt_level == 0 {
return false;
}
match *op {
interpret::Operand::Immediate(Immediate::Scalar(ScalarMaybeUndef::Scalar(s))) =>
s.is_bits(),
interpret::Operand::Immediate(Immediate::ScalarPair(ScalarMaybeUndef::Scalar(l),
ScalarMaybeUndef::Scalar(r))) =>
l.is_bits() && r.is_bits(),
2019-11-24 18:09:58 -06:00
interpret::Operand::Indirect(_) if mir_opt_level >= 2 => {
intern_const_alloc_recursive(
&mut self.ecx,
None,
op.assert_mem_place()
).expect("failed to intern alloc");
2019-11-24 18:09:58 -06:00
true
},
_ => false
}
}
2018-01-28 07:41:17 -06:00
}
struct CanConstProp {
can_const_prop: IndexVec<Local, bool>,
2018-01-28 07:41:17 -06:00
// false at the beginning, once set, there are not allowed to be any more assignments
found_assignment: IndexVec<Local, bool>,
2018-01-28 07:41:17 -06:00
}
impl CanConstProp {
2018-01-28 07:41:17 -06:00
/// returns true if `local` can be propagated
fn check(body: ReadOnlyBodyCache<'_, '_>) -> IndexVec<Local, bool> {
2018-01-28 07:41:17 -06:00
let mut cpv = CanConstProp {
can_const_prop: IndexVec::from_elem(true, &body.local_decls),
found_assignment: IndexVec::from_elem(false, &body.local_decls),
2018-01-28 07:41:17 -06:00
};
for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
// cannot use args at all
// cannot use locals because if x < y { y - x } else { x - y } would
// lint for x != y
// FIXME(oli-obk): lint variables until they are used in a condition
// FIXME(oli-obk): lint if return value is constant
let local_kind = body.local_kind(local);
*val = local_kind == LocalKind::Temp || local_kind == LocalKind::ReturnPointer;
if !*val {
trace!("local {:?} can't be propagated because it's not a temporary", local);
}
}
cpv.visit_body(body);
2018-01-28 07:41:17 -06:00
cpv.can_const_prop
}
}
2018-01-28 07:41:17 -06:00
impl<'tcx> Visitor<'tcx> for CanConstProp {
fn visit_local(
2018-01-28 07:41:17 -06:00
&mut self,
&local: &Local,
context: PlaceContext,
_: Location,
2018-01-28 07:41:17 -06:00
) {
use rustc::mir::visit::PlaceContext::*;
match context {
// Constants must have at most one write
// FIXME(oli-obk): we could be more powerful here, if the multiple writes
// only occur in independent execution paths
MutatingUse(MutatingUseContext::Store) => if self.found_assignment[local] {
trace!("local {:?} can't be propagated because of multiple assignments", local);
self.can_const_prop[local] = false;
} else {
self.found_assignment[local] = true
2018-01-28 07:41:17 -06:00
},
// Reading constants is allowed an arbitrary number of times
NonMutatingUse(NonMutatingUseContext::Copy) |
NonMutatingUse(NonMutatingUseContext::Move) |
NonMutatingUse(NonMutatingUseContext::Inspect) |
NonMutatingUse(NonMutatingUseContext::Projection) |
MutatingUse(MutatingUseContext::Projection) |
NonUse(_) => {},
_ => {
trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
self.can_const_prop[local] = false;
},
2018-01-28 07:41:17 -06:00
}
}
}
impl<'mir, 'tcx> MutVisitor<'tcx> for ConstPropagator<'mir, 'tcx> {
2019-10-20 15:11:04 -05:00
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
2018-01-28 07:41:17 -06:00
fn visit_constant(
&mut self,
constant: &mut Constant<'tcx>,
2018-01-28 07:41:17 -06:00
location: Location,
) {
trace!("visit_constant: {:?}", constant);
self.super_constant(constant, location);
self.eval_constant(constant);
2018-01-28 07:41:17 -06:00
}
fn visit_statement(
&mut self,
statement: &mut Statement<'tcx>,
2018-01-28 07:41:17 -06:00
location: Location,
) {
trace!("visit_statement: {:?}", statement);
if let StatementKind::Assign(box(ref place, ref mut rval)) = statement.kind {
2019-04-26 07:26:49 -05:00
let place_ty: Ty<'tcx> = place
.ty(&self.local_decls, self.tcx)
.ty;
2018-06-04 11:32:06 -05:00
if let Ok(place_layout) = self.tcx.layout_of(self.param_env.and(place_ty)) {
if let Some(local) = place.as_local() {
2019-10-12 07:21:51 -05:00
let source = statement.source_info;
if let Some(()) = self.const_prop(rval, place_layout, source, place) {
2018-06-04 11:32:06 -05:00
if self.can_const_prop[local] {
2019-10-12 07:21:51 -05:00
trace!("propagated into {:?}", local);
if let Some(value) = self.get_const(local) {
if self.should_const_prop(value) {
trace!("replacing {:?} with {:?}", rval, value);
self.replace_with_const(
rval,
value,
statement.source_info,
);
}
}
} else {
2019-10-12 07:21:51 -05:00
trace!("can't propagate into {:?}", local);
if local != RETURN_PLACE {
self.remove_const(local);
}
2018-06-04 11:32:06 -05:00
}
2018-01-28 07:41:17 -06:00
}
}
}
} else {
match statement.kind {
StatementKind::StorageLive(local) |
StatementKind::StorageDead(local) if self.can_const_prop[local] => {
let frame = self.ecx.frame_mut();
frame.locals[local].value =
if let StatementKind::StorageLive(_) = statement.kind {
LocalValue::Uninitialized
} else {
LocalValue::Dead
};
}
_ => {}
}
2018-01-28 07:41:17 -06:00
}
self.super_statement(statement, location);
2018-01-28 07:41:17 -06:00
}
fn visit_terminator(
2018-01-28 07:41:17 -06:00
&mut self,
terminator: &mut Terminator<'tcx>,
location: Location,
2018-01-28 07:41:17 -06:00
) {
self.super_terminator(terminator, location);
let source_info = terminator.source_info;
match &mut terminator.kind {
TerminatorKind::Assert { expected, ref msg, ref mut cond, .. } => {
if let Some(value) = self.eval_operand(&cond, source_info) {
trace!("assertion on {:?} should be {:?}", value, expected);
let expected = ScalarMaybeUndef::from(Scalar::from_bool(*expected));
let value_const = self.ecx.read_scalar(value).unwrap();
if expected != value_const {
// poison all places this operand references so that further code
// doesn't use the invalid value
match cond {
Operand::Move(ref place) | Operand::Copy(ref place) => {
if let PlaceBase::Local(local) = place.base {
2019-06-21 06:36:04 -05:00
self.remove_const(local);
}
},
Operand::Constant(_) => {}
}
let span = terminator.source_info.span;
let hir_id = self
.tcx
.hir()
.as_local_hir_id(self.source.def_id())
.expect("some part of a failing const eval must be local");
let msg = match msg {
2019-07-29 02:58:55 -05:00
PanicInfo::Overflow(_) |
PanicInfo::OverflowNeg |
PanicInfo::DivisionByZero |
PanicInfo::RemainderByZero =>
msg.description().to_owned(),
2019-07-29 02:58:55 -05:00
PanicInfo::BoundsCheck { ref len, ref index } => {
let len = self
.eval_operand(len, source_info)
.expect("len must be const");
let len = match self.ecx.read_scalar(len) {
Ok(ScalarMaybeUndef::Scalar(Scalar::Raw {
data, ..
})) => data,
other => bug!("const len not primitive: {:?}", other),
};
let index = self
.eval_operand(index, source_info)
.expect("index must be const");
let index = match self.ecx.read_scalar(index) {
Ok(ScalarMaybeUndef::Scalar(Scalar::Raw {
data, ..
})) => data,
other => bug!("const index not primitive: {:?}", other),
};
format!(
"index out of bounds: \
the len is {} but the index is {}",
len,
index,
)
},
// Need proper const propagator for these
_ => return,
};
self.tcx.lint_hir(
::rustc::lint::builtin::CONST_ERR,
hir_id,
span,
&msg,
);
} else {
if self.should_const_prop(value) {
if let ScalarMaybeUndef::Scalar(scalar) = value_const {
*cond = self.operand_from_scalar(
scalar,
self.tcx.types.bool,
source_info.span,
);
}
}
}
2018-01-28 07:41:17 -06:00
}
},
TerminatorKind::SwitchInt { ref mut discr, switch_ty, .. } => {
if let Some(value) = self.eval_operand(&discr, source_info) {
if self.should_const_prop(value) {
if let ScalarMaybeUndef::Scalar(scalar) =
self.ecx.read_scalar(value).unwrap() {
*discr = self.operand_from_scalar(scalar, switch_ty, source_info.span);
}
}
}
},
//none of these have Operands to const-propagate
TerminatorKind::Goto { .. } |
TerminatorKind::Resume |
TerminatorKind::Abort |
TerminatorKind::Return |
TerminatorKind::Unreachable |
TerminatorKind::Drop { .. } |
TerminatorKind::DropAndReplace { .. } |
TerminatorKind::Yield { .. } |
TerminatorKind::GeneratorDrop |
TerminatorKind::FalseEdges { .. } |
TerminatorKind::FalseUnwind { .. } => { }
//FIXME(wesleywiser) Call does have Operands that could be const-propagated
TerminatorKind::Call { .. } => { }
2018-01-28 07:41:17 -06:00
}
}
}