rust/src/librustc/ty/relate.rs

731 lines
27 KiB
Rust
Raw Normal View History

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generalized type relating mechanism. A type relation R relates a
//! pair of values (A, B). A and B are usually types or regions but
//! can be other things. Examples of type relations are subtyping,
//! type equality, etc.
use hir::def_id::DefId;
use mir::interpret::ConstVal;
use ty::subst::{Kind, UnpackedKind, Substs};
use ty::{self, Ty, TyCtxt, TypeFoldable};
use ty::error::{ExpectedFound, TypeError};
use mir::interpret::GlobalId;
use util::common::ErrorReported;
use std::rc::Rc;
use std::iter;
use rustc_target::spec::abi;
2016-03-29 00:50:44 -05:00
use hir as ast;
2015-09-06 13:51:58 -05:00
pub type RelateResult<'tcx, T> = Result<T, TypeError<'tcx>>;
#[derive(Clone, Debug)]
pub enum Cause {
ExistentialRegionBound, // relating an existential region bound
}
pub trait TypeRelation<'a, 'gcx: 'a+'tcx, 'tcx: 'a> : Sized {
fn tcx(&self) -> TyCtxt<'a, 'gcx, 'tcx>;
/// Returns a static string we can use for printouts.
fn tag(&self) -> &'static str;
/// Returns true if the value `a` is the "expected" type in the
/// relation. Just affects error messages.
fn a_is_expected(&self) -> bool;
fn with_cause<F,R>(&mut self, _cause: Cause, f: F) -> R
where F: FnOnce(&mut Self) -> R
{
f(self)
}
/// Generic relation routine suitable for most anything.
fn relate<T: Relate<'tcx>>(&mut self, a: &T, b: &T) -> RelateResult<'tcx, T> {
Relate::relate(self, a, b)
}
/// Relate the two substitutions for the given item. The default
/// is to look up the variance for the item and proceed
/// accordingly.
fn relate_item_substs(&mut self,
item_def_id: DefId,
a_subst: &'tcx Substs<'tcx>,
b_subst: &'tcx Substs<'tcx>)
-> RelateResult<'tcx, &'tcx Substs<'tcx>>
{
debug!("relate_item_substs(item_def_id={:?}, a_subst={:?}, b_subst={:?})",
item_def_id,
a_subst,
b_subst);
let opt_variances = self.tcx().variances_of(item_def_id);
relate_substs(self, Some(&opt_variances), a_subst, b_subst)
}
/// Switch variance for the purpose of relating `a` and `b`.
fn relate_with_variance<T: Relate<'tcx>>(&mut self,
variance: ty::Variance,
a: &T,
b: &T)
-> RelateResult<'tcx, T>;
// Overrideable relations. You shouldn't typically call these
// directly, instead call `relate()`, which in turn calls
// these. This is both more uniform but also allows us to add
// additional hooks for other types in the future if needed
// without making older code, which called `relate`, obsolete.
fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>;
fn regions(&mut self, a: ty::Region<'tcx>, b: ty::Region<'tcx>)
-> RelateResult<'tcx, ty::Region<'tcx>>;
fn binders<T>(&mut self, a: &ty::Binder<T>, b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where T: Relate<'tcx>;
}
pub trait Relate<'tcx>: TypeFoldable<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R, a: &Self, b: &Self)
-> RelateResult<'tcx, Self>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a;
}
///////////////////////////////////////////////////////////////////////////
// Relate impls
impl<'tcx> Relate<'tcx> for ty::TypeAndMut<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::TypeAndMut<'tcx>,
b: &ty::TypeAndMut<'tcx>)
-> RelateResult<'tcx, ty::TypeAndMut<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
2015-06-18 12:25:05 -05:00
debug!("{}.mts({:?}, {:?})",
relation.tag(),
2015-06-18 12:25:05 -05:00
a,
b);
if a.mutbl != b.mutbl {
2015-07-10 17:40:04 -05:00
Err(TypeError::Mutability)
} else {
let mutbl = a.mutbl;
let variance = match mutbl {
ast::Mutability::MutImmutable => ty::Covariant,
ast::Mutability::MutMutable => ty::Invariant,
};
let ty = relation.relate_with_variance(variance, &a.ty, &b.ty)?;
Ok(ty::TypeAndMut {ty: ty, mutbl: mutbl})
}
}
}
pub fn relate_substs<'a, 'gcx, 'tcx, R>(relation: &mut R,
variances: Option<&Vec<ty::Variance>>,
a_subst: &'tcx Substs<'tcx>,
b_subst: &'tcx Substs<'tcx>)
-> RelateResult<'tcx, &'tcx Substs<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
let tcx = relation.tcx();
2016-08-16 22:32:00 -05:00
let params = a_subst.iter().zip(b_subst).enumerate().map(|(i, (a, b))| {
let variance = variances.map_or(ty::Invariant, |v| v[i]);
relation.relate_with_variance(variance, a, b)
});
Ok(tcx.mk_substs(params)?)
}
impl<'tcx> Relate<'tcx> for ty::FnSig<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::FnSig<'tcx>,
b: &ty::FnSig<'tcx>)
-> RelateResult<'tcx, ty::FnSig<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
let tcx = relation.tcx();
if a.variadic != b.variadic {
2015-07-10 17:40:04 -05:00
return Err(TypeError::VariadicMismatch(
expected_found(relation, &a.variadic, &b.variadic)));
}
let unsafety = relation.relate(&a.unsafety, &b.unsafety)?;
let abi = relation.relate(&a.abi, &b.abi)?;
if a.inputs().len() != b.inputs().len() {
return Err(TypeError::ArgCount);
}
let inputs_and_output = a.inputs().iter().cloned()
.zip(b.inputs().iter().cloned())
.map(|x| (x, false))
.chain(iter::once(((a.output(), b.output()), true)))
.map(|((a, b), is_output)| {
if is_output {
relation.relate(&a, &b)
} else {
relation.relate_with_variance(ty::Contravariant, &a, &b)
}
});
Ok(ty::FnSig {
inputs_and_output: tcx.mk_type_list(inputs_and_output)?,
variadic: a.variadic,
unsafety,
abi,
})
}
}
impl<'tcx> Relate<'tcx> for ast::Unsafety {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ast::Unsafety,
b: &ast::Unsafety)
-> RelateResult<'tcx, ast::Unsafety>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
if a != b {
2015-07-10 17:40:04 -05:00
Err(TypeError::UnsafetyMismatch(expected_found(relation, a, b)))
} else {
Ok(*a)
}
}
}
impl<'tcx> Relate<'tcx> for abi::Abi {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &abi::Abi,
b: &abi::Abi)
-> RelateResult<'tcx, abi::Abi>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
if a == b {
Ok(*a)
} else {
2015-07-10 17:40:04 -05:00
Err(TypeError::AbiMismatch(expected_found(relation, a, b)))
}
}
}
impl<'tcx> Relate<'tcx> for ty::ProjectionTy<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::ProjectionTy<'tcx>,
b: &ty::ProjectionTy<'tcx>)
-> RelateResult<'tcx, ty::ProjectionTy<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
if a.item_def_id != b.item_def_id {
Err(TypeError::ProjectionMismatched(
expected_found(relation, &a.item_def_id, &b.item_def_id)))
} else {
let substs = relation.relate(&a.substs, &b.substs)?;
Ok(ty::ProjectionTy {
item_def_id: a.item_def_id,
substs: &substs,
})
}
}
}
impl<'tcx> Relate<'tcx> for ty::ExistentialProjection<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::ExistentialProjection<'tcx>,
b: &ty::ExistentialProjection<'tcx>)
-> RelateResult<'tcx, ty::ExistentialProjection<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
if a.item_def_id != b.item_def_id {
Err(TypeError::ProjectionMismatched(
expected_found(relation, &a.item_def_id, &b.item_def_id)))
} else {
let ty = relation.relate(&a.ty, &b.ty)?;
let substs = relation.relate(&a.substs, &b.substs)?;
Ok(ty::ExistentialProjection {
item_def_id: a.item_def_id,
substs,
ty,
})
}
}
}
impl<'tcx> Relate<'tcx> for Vec<ty::PolyExistentialProjection<'tcx>> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &Vec<ty::PolyExistentialProjection<'tcx>>,
b: &Vec<ty::PolyExistentialProjection<'tcx>>)
-> RelateResult<'tcx, Vec<ty::PolyExistentialProjection<'tcx>>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
// To be compatible, `a` and `b` must be for precisely the
// same set of traits and item names. We always require that
// projection bounds lists are sorted by trait-def-id and item-name,
// so we can just iterate through the lists pairwise, so long as they are the
// same length.
if a.len() != b.len() {
2015-07-10 17:40:04 -05:00
Err(TypeError::ProjectionBoundsLength(expected_found(relation, &a.len(), &b.len())))
} else {
a.iter().zip(b)
.map(|(a, b)| relation.relate(a, b))
.collect()
}
}
}
impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::TraitRef<'tcx>,
b: &ty::TraitRef<'tcx>)
-> RelateResult<'tcx, ty::TraitRef<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
// Different traits cannot be related
if a.def_id != b.def_id {
2015-07-10 17:40:04 -05:00
Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id)))
} else {
let substs = relate_substs(relation, None, a.substs, b.substs)?;
Ok(ty::TraitRef { def_id: a.def_id, substs: substs })
}
}
}
impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::ExistentialTraitRef<'tcx>,
b: &ty::ExistentialTraitRef<'tcx>)
-> RelateResult<'tcx, ty::ExistentialTraitRef<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
// Different traits cannot be related
if a.def_id != b.def_id {
Err(TypeError::Traits(expected_found(relation, &a.def_id, &b.def_id)))
} else {
let substs = relate_substs(relation, None, a.substs, b.substs)?;
Ok(ty::ExistentialTraitRef { def_id: a.def_id, substs: substs })
}
}
}
#[derive(Debug, Clone)]
struct GeneratorWitness<'tcx>(&'tcx ty::Slice<Ty<'tcx>>);
TupleStructTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for GeneratorWitness<'tcx> {
a
}
}
impl<'tcx> Relate<'tcx> for GeneratorWitness<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &GeneratorWitness<'tcx>,
b: &GeneratorWitness<'tcx>)
-> RelateResult<'tcx, GeneratorWitness<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
assert!(a.0.len() == b.0.len());
let tcx = relation.tcx();
let types = tcx.mk_type_list(a.0.iter().zip(b.0).map(|(a, b)| relation.relate(a, b)))?;
Ok(GeneratorWitness(types))
}
}
impl<'tcx> Relate<'tcx> for Ty<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &Ty<'tcx>,
b: &Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
relation.tys(a, b)
}
}
/// The main "type relation" routine. Note that this does not handle
/// inference artifacts, so you should filter those out before calling
/// it.
pub fn super_relate_tys<'a, 'gcx, 'tcx, R>(relation: &mut R,
a: Ty<'tcx>,
b: Ty<'tcx>)
-> RelateResult<'tcx, Ty<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
let tcx = relation.tcx();
let a_sty = &a.sty;
let b_sty = &b.sty;
debug!("super_tys: a_sty={:?} b_sty={:?}", a_sty, b_sty);
match (a_sty, b_sty) {
(&ty::TyInfer(_), _) |
(_, &ty::TyInfer(_)) =>
{
// The caller should handle these cases!
bug!("var types encountered in super_relate_tys")
}
(&ty::TyError, _) | (_, &ty::TyError) =>
{
Ok(tcx.types.err)
}
(&ty::TyNever, _) |
(&ty::TyChar, _) |
(&ty::TyBool, _) |
(&ty::TyInt(_), _) |
(&ty::TyUint(_), _) |
(&ty::TyFloat(_), _) |
(&ty::TyStr, _)
if a == b =>
{
Ok(a)
}
(&ty::TyParam(ref a_p), &ty::TyParam(ref b_p))
2016-08-16 22:32:00 -05:00
if a_p.idx == b_p.idx =>
{
Ok(a)
}
(&ty::TyAdt(a_def, a_substs), &ty::TyAdt(b_def, b_substs))
if a_def == b_def =>
{
let substs = relation.relate_item_substs(a_def.did, a_substs, b_substs)?;
Ok(tcx.mk_adt(a_def, substs))
}
2017-09-03 13:53:58 -05:00
(&ty::TyForeign(a_id), &ty::TyForeign(b_id))
if a_id == b_id =>
{
Ok(tcx.mk_foreign(a_id))
}
(&ty::TyDynamic(ref a_obj, ref a_region), &ty::TyDynamic(ref b_obj, ref b_region)) => {
let region_bound = relation.with_cause(Cause::ExistentialRegionBound,
|relation| {
relation.relate_with_variance(
ty::Contravariant,
a_region,
b_region)
})?;
Ok(tcx.mk_dynamic(relation.relate(a_obj, b_obj)?, region_bound))
}
(&ty::TyGenerator(a_id, a_substs, movability),
&ty::TyGenerator(b_id, b_substs, _))
2016-12-26 07:34:03 -06:00
if a_id == b_id =>
{
// All TyGenerator types with the same id represent
// the (anonymous) type of the same generator expression. So
// all of their regions should be equated.
let substs = relation.relate(&a_substs, &b_substs)?;
Ok(tcx.mk_generator(a_id, substs, movability))
2016-12-26 07:34:03 -06:00
}
(&ty::TyGeneratorWitness(a_types), &ty::TyGeneratorWitness(b_types)) =>
{
// Wrap our types with a temporary GeneratorWitness struct
// inside the binder so we can related them
let a_types = a_types.map_bound(GeneratorWitness);
let b_types = b_types.map_bound(GeneratorWitness);
// Then remove the GeneratorWitness for the result
let types = relation.relate(&a_types, &b_types)?.map_bound(|witness| witness.0);
Ok(tcx.mk_generator_witness(types))
}
(&ty::TyClosure(a_id, a_substs),
&ty::TyClosure(b_id, b_substs))
if a_id == b_id =>
{
// All TyClosure types with the same id represent
// the (anonymous) type of the same closure expression. So
// all of their regions should be equated.
let substs = relation.relate(&a_substs, &b_substs)?;
Ok(tcx.mk_closure(a_id, substs))
}
(&ty::TyRawPtr(ref a_mt), &ty::TyRawPtr(ref b_mt)) =>
{
let mt = relation.relate(a_mt, b_mt)?;
Ok(tcx.mk_ptr(mt))
}
(&ty::TyRef(a_r, a_ty, a_mutbl), &ty::TyRef(b_r, b_ty, b_mutbl)) =>
{
let r = relation.relate_with_variance(ty::Contravariant, &a_r, &b_r)?;
let a_mt = ty::TypeAndMut { ty: a_ty, mutbl: a_mutbl };
let b_mt = ty::TypeAndMut { ty: b_ty, mutbl: b_mutbl };
let mt = relation.relate(&a_mt, &b_mt)?;
Ok(tcx.mk_ref(r, mt))
}
(&ty::TyArray(a_t, sz_a), &ty::TyArray(b_t, sz_b)) =>
{
let t = relation.relate(&a_t, &b_t)?;
assert_eq!(sz_a.ty, tcx.types.usize);
assert_eq!(sz_b.ty, tcx.types.usize);
let to_u64 = |x: &'tcx ty::Const<'tcx>| -> Result<u64, ErrorReported> {
if let Some(s) = x.assert_usize(tcx) {
return Ok(s);
}
match x.val {
ConstVal::Unevaluated(def_id, substs) => {
// FIXME(eddyb) get the right param_env.
let param_env = ty::ParamEnv::empty();
match tcx.lift_to_global(&substs) {
Some(substs) => {
2018-01-02 17:22:09 -06:00
let instance = ty::Instance::resolve(
tcx.global_tcx(),
param_env,
def_id,
substs,
);
if let Some(instance) = instance {
let cid = GlobalId {
instance,
promoted: None
};
if let Some(s) = tcx.const_eval(param_env.and(cid))
.ok()
.map(|c| c.unwrap_usize(tcx)) {
return Ok(s)
2018-01-16 02:24:38 -06:00
}
}
2018-01-02 17:22:09 -06:00
},
None => {}
}
tcx.sess.delay_span_bug(tcx.def_span(def_id),
"array length could not be evaluated");
Err(ErrorReported)
}
_ => bug!("arrays should not have {:?} as length", x)
}
};
match (to_u64(sz_a), to_u64(sz_b)) {
(Ok(sz_a_u64), Ok(sz_b_u64)) => {
if sz_a_u64 == sz_b_u64 {
Ok(tcx.mk_ty(ty::TyArray(t, sz_a)))
} else {
Err(TypeError::FixedArraySize(
expected_found(relation, &sz_a_u64, &sz_b_u64)))
}
}
// We reported an error or will ICE, so we can return TyError.
(Err(ErrorReported), _) | (_, Err(ErrorReported)) => {
Ok(tcx.types.err)
}
}
}
(&ty::TySlice(a_t), &ty::TySlice(b_t)) =>
{
let t = relation.relate(&a_t, &b_t)?;
Ok(tcx.mk_slice(t))
}
(&ty::TyTuple(as_), &ty::TyTuple(bs)) =>
{
if as_.len() == bs.len() {
Ok(tcx.mk_tup(as_.iter().zip(bs).map(|(a, b)| relation.relate(a, b)))?)
} else if !(as_.is_empty() || bs.is_empty()) {
2015-07-10 17:40:04 -05:00
Err(TypeError::TupleSize(
expected_found(relation, &as_.len(), &bs.len())))
} else {
2015-07-10 17:40:04 -05:00
Err(TypeError::Sorts(expected_found(relation, &a, &b)))
}
}
(&ty::TyFnDef(a_def_id, a_substs), &ty::TyFnDef(b_def_id, b_substs))
if a_def_id == b_def_id =>
{
let substs = relation.relate_item_substs(a_def_id, a_substs, b_substs)?;
Ok(tcx.mk_fn_def(a_def_id, substs))
}
(&ty::TyFnPtr(a_fty), &ty::TyFnPtr(b_fty)) =>
{
let fty = relation.relate(&a_fty, &b_fty)?;
Ok(tcx.mk_fn_ptr(fty))
}
(&ty::TyProjection(ref a_data), &ty::TyProjection(ref b_data)) =>
{
let projection_ty = relation.relate(a_data, b_data)?;
Ok(tcx.mk_projection(projection_ty.item_def_id, projection_ty.substs))
}
(&ty::TyAnon(a_def_id, a_substs), &ty::TyAnon(b_def_id, b_substs))
if a_def_id == b_def_id =>
{
let substs = relate_substs(relation, None, a_substs, b_substs)?;
Ok(tcx.mk_anon(a_def_id, substs))
}
_ =>
{
2015-07-10 17:40:04 -05:00
Err(TypeError::Sorts(expected_found(relation, &a, &b)))
}
}
}
impl<'tcx> Relate<'tcx> for &'tcx ty::Slice<ty::ExistentialPredicate<'tcx>> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &Self,
b: &Self)
-> RelateResult<'tcx, Self>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a {
if a.len() != b.len() {
return Err(TypeError::ExistentialMismatch(expected_found(relation, a, b)));
}
let tcx = relation.tcx();
let v = a.iter().zip(b.iter()).map(|(ep_a, ep_b)| {
use ty::ExistentialPredicate::*;
match (*ep_a, *ep_b) {
(Trait(ref a), Trait(ref b)) => Ok(Trait(relation.relate(a, b)?)),
(Projection(ref a), Projection(ref b)) => Ok(Projection(relation.relate(a, b)?)),
(AutoTrait(ref a), AutoTrait(ref b)) if a == b => Ok(AutoTrait(*a)),
_ => Err(TypeError::ExistentialMismatch(expected_found(relation, a, b)))
}
});
Ok(tcx.mk_existential_predicates(v)?)
}
}
impl<'tcx> Relate<'tcx> for ty::ClosureSubsts<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::ClosureSubsts<'tcx>,
b: &ty::ClosureSubsts<'tcx>)
-> RelateResult<'tcx, ty::ClosureSubsts<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
let substs = relate_substs(relation, None, a.substs, b.substs)?;
Ok(ty::ClosureSubsts { substs })
}
}
impl<'tcx> Relate<'tcx> for ty::GeneratorSubsts<'tcx> {
2016-12-26 07:34:03 -06:00
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::GeneratorSubsts<'tcx>,
b: &ty::GeneratorSubsts<'tcx>)
-> RelateResult<'tcx, ty::GeneratorSubsts<'tcx>>
2016-12-26 07:34:03 -06:00
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
let substs = relate_substs(relation, None, a.substs, b.substs)?;
Ok(ty::GeneratorSubsts { substs })
2016-12-26 07:34:03 -06:00
}
}
impl<'tcx> Relate<'tcx> for &'tcx Substs<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &&'tcx Substs<'tcx>,
b: &&'tcx Substs<'tcx>)
-> RelateResult<'tcx, &'tcx Substs<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
relate_substs(relation, None, a, b)
}
}
impl<'tcx> Relate<'tcx> for ty::Region<'tcx> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::Region<'tcx>,
b: &ty::Region<'tcx>)
-> RelateResult<'tcx, ty::Region<'tcx>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
relation.regions(*a, *b)
}
}
impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for ty::Binder<T> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &ty::Binder<T>,
b: &ty::Binder<T>)
-> RelateResult<'tcx, ty::Binder<T>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
relation.binders(a, b)
}
}
impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Rc<T> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &Rc<T>,
b: &Rc<T>)
-> RelateResult<'tcx, Rc<T>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
let a: &T = a;
let b: &T = b;
Ok(Rc::new(relation.relate(a, b)?))
}
}
impl<'tcx, T: Relate<'tcx>> Relate<'tcx> for Box<T> {
fn relate<'a, 'gcx, R>(relation: &mut R,
a: &Box<T>,
b: &Box<T>)
-> RelateResult<'tcx, Box<T>>
where R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a
{
let a: &T = a;
let b: &T = b;
Ok(Box::new(relation.relate(a, b)?))
}
}
impl<'tcx> Relate<'tcx> for Kind<'tcx> {
fn relate<'a, 'gcx, R>(
relation: &mut R,
a: &Kind<'tcx>,
b: &Kind<'tcx>
) -> RelateResult<'tcx, Kind<'tcx>>
where
R: TypeRelation<'a, 'gcx, 'tcx>, 'gcx: 'a+'tcx, 'tcx: 'a,
{
match (a.unpack(), b.unpack()) {
(UnpackedKind::Lifetime(a_lt), UnpackedKind::Lifetime(b_lt)) => {
Ok(relation.relate(&a_lt, &b_lt)?.into())
}
(UnpackedKind::Type(a_ty), UnpackedKind::Type(b_ty)) => {
Ok(relation.relate(&a_ty, &b_ty)?.into())
}
(UnpackedKind::Lifetime(_), _) | (UnpackedKind::Type(_), _) => bug!()
}
}
}
///////////////////////////////////////////////////////////////////////////
// Error handling
pub fn expected_found<'a, 'gcx, 'tcx, R, T>(relation: &mut R,
a: &T,
b: &T)
-> ExpectedFound<T>
where R: TypeRelation<'a, 'gcx, 'tcx>, T: Clone, 'gcx: 'a+'tcx, 'tcx: 'a
{
expected_found_bool(relation.a_is_expected(), a, b)
}
pub fn expected_found_bool<T>(a_is_expected: bool,
a: &T,
b: &T)
2015-09-06 13:51:58 -05:00
-> ExpectedFound<T>
where T: Clone
{
let a = a.clone();
let b = b.clone();
if a_is_expected {
2015-09-06 13:51:58 -05:00
ExpectedFound {expected: a, found: b}
} else {
2015-09-06 13:51:58 -05:00
ExpectedFound {expected: b, found: a}
}
}