rust/library/alloc/tests/binary_heap.rs

490 lines
13 KiB
Rust
Raw Normal View History

use std::collections::binary_heap::{Drain, PeekMut};
2019-12-22 16:42:04 -06:00
use std::collections::BinaryHeap;
use std::iter::TrustedLen;
use std::panic::{catch_unwind, AssertUnwindSafe};
use std::sync::atomic::{AtomicU32, Ordering};
#[test]
fn test_iterator() {
let data = vec![5, 9, 3];
let iterout = [9, 5, 3];
let heap = BinaryHeap::from(data);
let mut i = 0;
for el in &heap {
assert_eq!(*el, iterout[i]);
i += 1;
}
}
#[test]
fn test_iter_rev_cloned_collect() {
let data = vec![5, 9, 3];
let iterout = vec![3, 5, 9];
let pq = BinaryHeap::from(data);
let v: Vec<_> = pq.iter().rev().cloned().collect();
assert_eq!(v, iterout);
}
#[test]
fn test_into_iter_collect() {
let data = vec![5, 9, 3];
let iterout = vec![9, 5, 3];
let pq = BinaryHeap::from(data);
let v: Vec<_> = pq.into_iter().collect();
assert_eq!(v, iterout);
}
#[test]
fn test_into_iter_size_hint() {
let data = vec![5, 9];
let pq = BinaryHeap::from(data);
let mut it = pq.into_iter();
assert_eq!(it.size_hint(), (2, Some(2)));
assert_eq!(it.next(), Some(9));
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next(), Some(5));
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}
#[test]
fn test_into_iter_rev_collect() {
let data = vec![5, 9, 3];
let iterout = vec![3, 5, 9];
let pq = BinaryHeap::from(data);
let v: Vec<_> = pq.into_iter().rev().collect();
assert_eq!(v, iterout);
}
#[test]
fn test_into_iter_sorted_collect() {
let heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
let it = heap.into_iter_sorted();
let sorted = it.collect::<Vec<_>>();
assert_eq!(sorted, vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 0]);
}
#[test]
fn test_drain_sorted_collect() {
let mut heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
let it = heap.drain_sorted();
let sorted = it.collect::<Vec<_>>();
assert_eq!(sorted, vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 2, 1, 1, 0]);
}
fn check_exact_size_iterator<I: ExactSizeIterator>(len: usize, it: I) {
let mut it = it;
for i in 0..it.len() {
let (lower, upper) = it.size_hint();
assert_eq!(Some(lower), upper);
assert_eq!(lower, len - i);
assert_eq!(it.len(), len - i);
it.next();
}
assert_eq!(it.len(), 0);
assert!(it.is_empty());
}
#[test]
fn test_exact_size_iterator() {
let heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
check_exact_size_iterator(heap.len(), heap.iter());
check_exact_size_iterator(heap.len(), heap.clone().into_iter());
check_exact_size_iterator(heap.len(), heap.clone().into_iter_sorted());
check_exact_size_iterator(heap.len(), heap.clone().drain());
check_exact_size_iterator(heap.len(), heap.clone().drain_sorted());
}
fn check_trusted_len<I: TrustedLen>(len: usize, it: I) {
let mut it = it;
for i in 0..len {
let (lower, upper) = it.size_hint();
if upper.is_some() {
assert_eq!(Some(lower), upper);
assert_eq!(lower, len - i);
}
it.next();
}
}
#[test]
fn test_trusted_len() {
let heap = BinaryHeap::from(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
check_trusted_len(heap.len(), heap.clone().into_iter_sorted());
check_trusted_len(heap.len(), heap.clone().drain_sorted());
}
#[test]
fn test_peek_and_pop() {
let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
let mut sorted = data.clone();
sorted.sort();
let mut heap = BinaryHeap::from(data);
while !heap.is_empty() {
assert_eq!(heap.peek().unwrap(), sorted.last().unwrap());
assert_eq!(heap.pop().unwrap(), sorted.pop().unwrap());
}
}
2016-05-23 18:59:11 -05:00
#[test]
fn test_peek_mut() {
let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
let mut heap = BinaryHeap::from(data);
assert_eq!(heap.peek(), Some(&10));
{
let mut top = heap.peek_mut().unwrap();
*top -= 2;
}
assert_eq!(heap.peek(), Some(&9));
}
#[test]
fn test_peek_mut_pop() {
let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
let mut heap = BinaryHeap::from(data);
assert_eq!(heap.peek(), Some(&10));
{
let mut top = heap.peek_mut().unwrap();
*top -= 2;
assert_eq!(PeekMut::pop(top), 8);
}
assert_eq!(heap.peek(), Some(&9));
}
#[test]
fn test_push() {
let mut heap = BinaryHeap::from(vec![2, 4, 9]);
assert_eq!(heap.len(), 3);
assert!(*heap.peek().unwrap() == 9);
heap.push(11);
assert_eq!(heap.len(), 4);
assert!(*heap.peek().unwrap() == 11);
heap.push(5);
assert_eq!(heap.len(), 5);
assert!(*heap.peek().unwrap() == 11);
heap.push(27);
assert_eq!(heap.len(), 6);
assert!(*heap.peek().unwrap() == 27);
heap.push(3);
assert_eq!(heap.len(), 7);
assert!(*heap.peek().unwrap() == 27);
heap.push(103);
assert_eq!(heap.len(), 8);
assert!(*heap.peek().unwrap() == 103);
}
#[test]
fn test_push_unique() {
let mut heap = BinaryHeap::<Box<_>>::from(vec![box 2, box 4, box 9]);
assert_eq!(heap.len(), 3);
assert!(**heap.peek().unwrap() == 9);
heap.push(box 11);
assert_eq!(heap.len(), 4);
assert!(**heap.peek().unwrap() == 11);
heap.push(box 5);
assert_eq!(heap.len(), 5);
assert!(**heap.peek().unwrap() == 11);
heap.push(box 27);
assert_eq!(heap.len(), 6);
assert!(**heap.peek().unwrap() == 27);
heap.push(box 3);
assert_eq!(heap.len(), 7);
assert!(**heap.peek().unwrap() == 27);
heap.push(box 103);
assert_eq!(heap.len(), 8);
assert!(**heap.peek().unwrap() == 103);
}
fn check_to_vec(mut data: Vec<i32>) {
let heap = BinaryHeap::from(data.clone());
let mut v = heap.clone().into_vec();
v.sort();
data.sort();
assert_eq!(v, data);
assert_eq!(heap.into_sorted_vec(), data);
}
#[test]
fn test_to_vec() {
check_to_vec(vec![]);
check_to_vec(vec![5]);
check_to_vec(vec![3, 2]);
check_to_vec(vec![2, 3]);
check_to_vec(vec![5, 1, 2]);
check_to_vec(vec![1, 100, 2, 3]);
check_to_vec(vec![1, 3, 5, 7, 9, 2, 4, 6, 8, 0]);
check_to_vec(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
check_to_vec(vec![9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]);
check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
check_to_vec(vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);
check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]);
check_to_vec(vec![5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]);
}
#[test]
fn test_in_place_iterator_specialization() {
let src: Vec<usize> = vec![1, 2, 3];
let src_ptr = src.as_ptr();
let heap: BinaryHeap<_> = src.into_iter().map(std::convert::identity).collect();
let heap_ptr = heap.iter().next().unwrap() as *const usize;
assert_eq!(src_ptr, heap_ptr);
let sink: Vec<_> = heap.into_iter().map(std::convert::identity).collect();
let sink_ptr = sink.as_ptr();
assert_eq!(heap_ptr, sink_ptr);
}
#[test]
fn test_empty_pop() {
let mut heap = BinaryHeap::<i32>::new();
assert!(heap.pop().is_none());
}
#[test]
fn test_empty_peek() {
let empty = BinaryHeap::<i32>::new();
assert!(empty.peek().is_none());
}
2016-05-23 18:59:11 -05:00
#[test]
fn test_empty_peek_mut() {
let mut empty = BinaryHeap::<i32>::new();
assert!(empty.peek_mut().is_none());
}
#[test]
fn test_from_iter() {
let xs = vec![9, 8, 7, 6, 5, 4, 3, 2, 1];
let mut q: BinaryHeap<_> = xs.iter().rev().cloned().collect();
for &x in &xs {
assert_eq!(q.pop().unwrap(), x);
}
}
#[test]
fn test_drain() {
let mut q: BinaryHeap<_> = [9, 8, 7, 6, 5, 4, 3, 2, 1].iter().cloned().collect();
assert_eq!(q.drain().take(5).count(), 5);
assert!(q.is_empty());
}
2015-06-03 05:38:42 -05:00
#[test]
fn test_drain_sorted() {
let mut q: BinaryHeap<_> = [9, 8, 7, 6, 5, 4, 3, 2, 1].iter().cloned().collect();
assert_eq!(q.drain_sorted().take(5).collect::<Vec<_>>(), vec![9, 8, 7, 6, 5]);
assert!(q.is_empty());
}
#[test]
fn test_drain_sorted_leak() {
static DROPS: AtomicU32 = AtomicU32::new(0);
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
struct D(u32, bool);
impl Drop for D {
fn drop(&mut self) {
DROPS.fetch_add(1, Ordering::SeqCst);
if self.1 {
panic!("panic in `drop`");
}
}
}
let mut q = BinaryHeap::from(vec![
D(0, false),
D(1, false),
D(2, false),
D(3, true),
D(4, false),
D(5, false),
]);
catch_unwind(AssertUnwindSafe(|| drop(q.drain_sorted()))).ok();
assert_eq!(DROPS.load(Ordering::SeqCst), 6);
}
2015-06-03 05:38:42 -05:00
#[test]
fn test_extend_ref() {
let mut a = BinaryHeap::new();
a.push(1);
a.push(2);
a.extend(&[3, 4, 5]);
assert_eq!(a.len(), 5);
assert_eq!(a.into_sorted_vec(), [1, 2, 3, 4, 5]);
let mut a = BinaryHeap::new();
a.push(1);
a.push(2);
let mut b = BinaryHeap::new();
b.push(3);
b.push(4);
b.push(5);
a.extend(&b);
assert_eq!(a.len(), 5);
assert_eq!(a.into_sorted_vec(), [1, 2, 3, 4, 5]);
}
#[test]
fn test_append() {
let mut a = BinaryHeap::from(vec![-10, 1, 2, 3, 3]);
let mut b = BinaryHeap::from(vec![-20, 5, 43]);
a.append(&mut b);
assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
assert!(b.is_empty());
}
#[test]
fn test_append_to_empty() {
let mut a = BinaryHeap::new();
let mut b = BinaryHeap::from(vec![-20, 5, 43]);
a.append(&mut b);
assert_eq!(a.into_sorted_vec(), [-20, 5, 43]);
assert!(b.is_empty());
}
#[test]
fn test_extend_specialization() {
let mut a = BinaryHeap::from(vec![-10, 1, 2, 3, 3]);
let b = BinaryHeap::from(vec![-20, 5, 43]);
a.extend(b);
assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
}
#[allow(dead_code)]
fn assert_covariance() {
2016-10-16 05:18:22 -05:00
fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> {
d
}
}
#[test]
fn test_retain() {
let mut a = BinaryHeap::from(vec![100, 10, 50, 1, 2, 20, 30]);
a.retain(|&x| x != 2);
// Check that 20 moved into 10's place.
assert_eq!(a.clone().into_vec(), [100, 20, 50, 1, 10, 30]);
a.retain(|_| true);
assert_eq!(a.clone().into_vec(), [100, 20, 50, 1, 10, 30]);
a.retain(|&x| x < 50);
assert_eq!(a.clone().into_vec(), [30, 20, 10, 1]);
a.retain(|_| false);
assert!(a.is_empty());
}
// old binaryheap failed this test
//
// Integrity means that all elements are present after a comparison panics,
// even if the order might not be correct.
//
// Destructors must be called exactly once per element.
// FIXME: re-enable emscripten once it can unwind again
#[test]
2019-11-22 16:11:56 -06:00
#[cfg(not(target_os = "emscripten"))]
fn panic_safe() {
2019-12-22 16:42:04 -06:00
use rand::{seq::SliceRandom, thread_rng};
use std::cmp;
use std::panic::{self, AssertUnwindSafe};
use std::sync::atomic::{AtomicUsize, Ordering};
2019-01-26 10:14:49 -06:00
static DROP_COUNTER: AtomicUsize = AtomicUsize::new(0);
#[derive(Eq, PartialEq, Ord, Clone, Debug)]
struct PanicOrd<T>(T, bool);
impl<T> Drop for PanicOrd<T> {
fn drop(&mut self) {
// update global drop count
DROP_COUNTER.fetch_add(1, Ordering::SeqCst);
}
}
impl<T: PartialOrd> PartialOrd for PanicOrd<T> {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
if self.1 || other.1 {
panic!("Panicking comparison");
}
self.0.partial_cmp(&other.0)
}
}
let mut rng = thread_rng();
const DATASZ: usize = 32;
// Miri is too slow
let ntest = if cfg!(miri) { 1 } else { 10 };
// don't use 0 in the data -- we want to catch the zeroed-out case.
let data = (1..=DATASZ).collect::<Vec<_>>();
// since it's a fuzzy test, run several tries.
for _ in 0..ntest {
for i in 1..=DATASZ {
DROP_COUNTER.store(0, Ordering::SeqCst);
2019-12-22 16:42:04 -06:00
let mut panic_ords: Vec<_> =
data.iter().filter(|&&x| x != i).map(|&x| PanicOrd(x, false)).collect();
let panic_item = PanicOrd(i, true);
// heapify the sane items
std: Depend directly on crates.io crates Ever since we added a Cargo-based build system for the compiler the standard library has always been a little special, it's never been able to depend on crates.io crates for runtime dependencies. This has been a result of various limitations, namely that Cargo doesn't understand that crates from crates.io depend on libcore, so Cargo tries to build crates before libcore is finished. I had an idea this afternoon, however, which lifts the strategy from #52919 to directly depend on crates.io crates from the standard library. After all is said and done this removes a whopping three submodules that we need to manage! The basic idea here is that for any crate `std` depends on it adds an *optional* dependency on an empty crate on crates.io, in this case named `rustc-std-workspace-core`. This crate is overridden via `[patch]` in this repository to point to a local crate we write, and *that* has a `path` dependency on libcore. Note that all `no_std` crates also depend on `compiler_builtins`, but if we're not using submodules we can publish `compiler_builtins` to crates.io and all crates can depend on it anyway! The basic strategy then looks like: * The standard library (or some transitive dep) decides to depend on a crate `foo`. * The standard library adds ```toml [dependencies] foo = { version = "0.1", features = ['rustc-dep-of-std'] } ``` * The crate `foo` has an optional dependency on `rustc-std-workspace-core` * The crate `foo` has an optional dependency on `compiler_builtins` * The crate `foo` has a feature `rustc-dep-of-std` which activates these crates and any other necessary infrastructure in the crate. A sample commit for `dlmalloc` [turns out to be quite simple][commit]. After that all `no_std` crates should largely build "as is" and still be publishable on crates.io! Notably they should be able to continue to use stable Rust if necessary, since the `rename-dependency` feature of Cargo is soon stabilizing. As a proof of concept, this commit removes the `dlmalloc`, `libcompiler_builtins`, and `libc` submodules from this repository. Long thorns in our side these are now gone for good and we can directly depend on crates.io! It's hoped that in the long term we can bring in other crates as necessary, but for now this is largely intended to simply make it easier to manage these crates and remove submodules. This should be a transparent non-breaking change for all users, but one possible stickler is that this almost for sure breaks out-of-tree `std`-building tools like `xargo` and `cargo-xbuild`. I think it should be relatively easy to get them working, however, as all that's needed is an entry in the `[patch]` section used to build the standard library. Hopefully we can work with these tools to solve this problem! [commit]: https://github.com/alexcrichton/dlmalloc-rs/commit/28ee12db813a3b650a7c25d1c36d2c17dcb88ae3
2018-11-19 23:52:50 -06:00
panic_ords.shuffle(&mut rng);
let mut heap = BinaryHeap::from(panic_ords);
let inner_data;
{
// push the panicking item to the heap and catch the panic
let thread_result = {
let mut heap_ref = AssertUnwindSafe(&mut heap);
panic::catch_unwind(move || {
heap_ref.push(panic_item);
})
};
assert!(thread_result.is_err());
// Assert no elements were dropped
let drops = DROP_COUNTER.load(Ordering::SeqCst);
assert!(drops == 0, "Must not drop items. drops={}", drops);
inner_data = heap.clone().into_vec();
drop(heap);
}
let drops = DROP_COUNTER.load(Ordering::SeqCst);
assert_eq!(drops, DATASZ);
let mut data_sorted = inner_data.into_iter().map(|p| p.0).collect::<Vec<_>>();
data_sorted.sort();
assert_eq!(data_sorted, data);
}
}
}