rust/src/libcore/result.rs

397 lines
9.5 KiB
Rust
Raw Normal View History

//! A type representing either success or failure
import either::either;
/// The result type
enum result<T, U> {
/// Contains the successful result value
ok(T),
/// Contains the error value
err(U)
}
/**
* Get the value out of a successful result
*
* # Failure
*
* If the result is an error
*/
2012-03-15 15:57:26 -05:00
pure fn get<T: copy, U>(res: result<T, U>) -> T {
alt res {
ok(t) { t }
err(the_err) {
unchecked{ fail #fmt("get called on error result: %?", the_err); }
}
}
}
/**
* Get the value out of an error result
*
* # Failure
*
* If the result is not an error
*/
2012-03-15 15:57:26 -05:00
pure fn get_err<T, U: copy>(res: result<T, U>) -> U {
alt res {
err(u) { u }
ok(_) {
fail ~"get_error called on ok result";
}
}
}
/// Returns true if the result is `ok`
pure fn is_ok<T, U>(res: result<T, U>) -> bool {
alt res {
ok(_) { true }
err(_) { false }
}
}
/// Returns true if the result is `err`
pure fn is_err<T, U>(res: result<T, U>) -> bool {
!is_ok(res)
}
/**
* Convert to the `either` type
*
* `ok` result variants are converted to `either::right` variants, `err`
* result variants are converted to `either::left`.
*/
pure fn to_either<T: copy, U: copy>(res: result<U, T>) -> either<T, U> {
alt res {
ok(res) { either::right(res) }
err(fail_) { either::left(fail_) }
}
}
/**
* Call a function based on a previous result
*
* If `res` is `ok` then the value is extracted and passed to `op` whereupon
* `op`s result is returned. if `res` is `err` then it is immediately
* returned. This function can be used to compose the results of two
* functions.
*
* Example:
*
* let res = chain(read_file(file)) { |buf|
* ok(parse_buf(buf))
* }
*/
fn chain<T, U: copy, V: copy>(res: result<T, V>, op: fn(T) -> result<U, V>)
-> result<U, V> {
alt res {
ok(t) { op(t) }
err(e) { err(e) }
}
}
2012-01-17 19:28:21 -06:00
/**
* Call a function based on a previous result
*
* If `res` is `err` then the value is extracted and passed to `op`
* whereupon `op`s result is returned. if `res` is `ok` then it is
* immediately returned. This function can be used to pass through a
* successful result while handling an error.
*/
2012-03-22 22:06:01 -05:00
fn chain_err<T: copy, U: copy, V: copy>(
res: result<T, V>,
op: fn(V) -> result<T, U>)
-> result<T, U> {
alt res {
ok(t) { ok(t) }
err(v) { op(v) }
}
}
/**
* Call a function based on a previous result
*
* If `res` is `ok` then the value is extracted and passed to `op` whereupon
* `op`s result is returned. if `res` is `err` then it is immediately
* returned. This function can be used to compose the results of two
* functions.
*
* Example:
*
* iter(read_file(file)) { |buf|
* print_buf(buf)
* }
*/
fn iter<T, E>(res: result<T, E>, f: fn(T)) {
alt res {
ok(t) { f(t) }
err(_) { }
}
}
/**
* Call a function based on a previous result
*
* If `res` is `err` then the value is extracted and passed to `op` whereupon
* `op`s result is returned. if `res` is `ok` then it is immediately returned.
* This function can be used to pass through a successful result while
* handling an error.
*/
fn iter_err<T, E>(res: result<T, E>, f: fn(E)) {
alt res {
ok(_) { }
err(e) { f(e) }
}
}
/**
* Call a function based on a previous result
*
* If `res` is `ok` then the value is extracted and passed to `op` whereupon
* `op`s result is wrapped in `ok` and returned. if `res` is `err` then it is
* immediately returned. This function can be used to compose the results of
* two functions.
*
* Example:
*
* let res = map(read_file(file)) { |buf|
* parse_buf(buf)
* }
*/
fn map<T, E: copy, U: copy>(res: result<T, E>, op: fn(T) -> U)
-> result<U, E> {
alt res {
ok(t) { ok(op(t)) }
err(e) { err(e) }
}
}
/**
* Call a function based on a previous result
*
* If `res` is `err` then the value is extracted and passed to `op` whereupon
* `op`s result is wrapped in an `err` and returned. if `res` is `ok` then it
* is immediately returned. This function can be used to pass through a
* successful result while handling an error.
*/
fn map_err<T: copy, E, F: copy>(res: result<T, E>, op: fn(E) -> F)
-> result<T, F> {
alt res {
ok(t) { ok(t) }
err(e) { err(op(e)) }
}
}
impl extensions<T, E> for result<T, E> {
fn is_ok() -> bool { is_ok(self) }
2012-04-01 17:44:01 -05:00
fn is_err() -> bool { is_err(self) }
2012-04-01 17:44:01 -05:00
fn iter(f: fn(T)) {
alt self {
ok(t) { f(t) }
err(_) { }
}
}
fn iter_err(f: fn(E)) {
alt self {
ok(_) { }
err(e) { f(e) }
}
}
}
impl extensions<T:copy, E> for result<T, E> {
fn get() -> T { get(self) }
fn map_err<F:copy>(op: fn(E) -> F) -> result<T,F> {
alt self {
ok(t) { ok(t) }
err(e) { err(op(e)) }
}
}
}
impl extensions<T, E:copy> for result<T, E> {
fn get_err() -> E { get_err(self) }
fn map<U:copy>(op: fn(T) -> U) -> result<U,E> {
alt self {
ok(t) { ok(op(t)) }
err(e) { err(e) }
}
}
}
impl extensions<T:copy, E:copy> for result<T,E> {
fn chain<U:copy>(op: fn(T) -> result<U,E>) -> result<U,E> {
chain(self, op)
}
fn chain_err<F:copy>(op: fn(E) -> result<T,F>) -> result<T,F> {
chain_err(self, op)
}
}
/**
* Maps each element in the vector `ts` using the operation `op`. Should an
* error occur, no further mappings are performed and the error is returned.
* Should no error occur, a vector containing the result of each map is
* returned.
*
* Here is an example which increments every integer in a vector,
* checking for overflow:
*
* fn inc_conditionally(x: uint) -> result<uint,str> {
* if x == uint::max_value { ret err("overflow"); }
* else { ret ok(x+1u); }
* }
* map(~[1u, 2u, 3u], inc_conditionally).chain {|incd|
* assert incd == ~[2u, 3u, 4u];
* }
*/
fn map_vec<T,U:copy,V:copy>(
ts: ~[T], op: fn(T) -> result<V,U>) -> result<~[V],U> {
let mut vs: ~[V] = ~[];
vec::reserve(vs, vec::len(ts));
2012-06-30 18:19:07 -05:00
for vec::each(ts) |t| {
alt op(t) {
ok(v) { vec::push(vs, v); }
err(u) { ret err(u); }
}
}
ret ok(vs);
}
fn map_opt<T,U:copy,V:copy>(
o_t: option<T>, op: fn(T) -> result<V,U>) -> result<option<V>,U> {
alt o_t {
none { ok(none) }
some(t) {
alt op(t) {
ok(v) { ok(some(v)) }
err(e) { err(e) }
}
}
}
}
/**
* Same as map, but it operates over two parallel vectors.
*
* A precondition is used here to ensure that the vectors are the same
* length. While we do not often use preconditions in the standard
* library, a precondition is used here because result::t is generally
* used in 'careful' code contexts where it is both appropriate and easy
* to accommodate an error like the vectors being of different lengths.
*/
fn map_vec2<S,T,U:copy,V:copy>(ss: ~[S], ts: ~[T],
op: fn(S,T) -> result<V,U>)
: vec::same_length(ss, ts) -> result<~[V],U> {
let n = vec::len(ts);
let mut vs = ~[];
vec::reserve(vs, n);
let mut i = 0u;
while i < n {
alt op(ss[i],ts[i]) {
ok(v) { vec::push(vs, v); }
err(u) { ret err(u); }
}
i += 1u;
}
ret ok(vs);
}
/**
* Applies op to the pairwise elements from `ss` and `ts`, aborting on
* error. This could be implemented using `map2()` but it is more efficient
* on its own as no result vector is built.
*/
fn iter_vec2<S,T,U:copy>(ss: ~[S], ts: ~[T],
op: fn(S,T) -> result<(),U>)
2012-03-22 22:06:01 -05:00
: vec::same_length(ss, ts)
-> result<(),U> {
2012-03-22 22:06:01 -05:00
let n = vec::len(ts);
let mut i = 0u;
while i < n {
alt op(ss[i],ts[i]) {
ok(()) { }
err(u) { ret err(u); }
}
i += 1u;
}
ret ok(());
}
/// Unwraps a result, assuming it is an `ok(T)`
fn unwrap<T, U>(-res: result<T, U>) -> T {
unsafe {
let addr = alt res {
ok(x) { ptr::addr_of(x) }
err(_) { fail ~"error result" }
};
let liberated_value = unsafe::reinterpret_cast(*addr);
unsafe::forget(res);
ret liberated_value;
}
}
2012-01-17 19:28:21 -06:00
#[cfg(test)]
mod tests {
fn op1() -> result::result<int, ~str> { result::ok(666) }
2012-01-17 19:28:21 -06:00
fn op2(&&i: int) -> result::result<uint, ~str> {
result::ok(i as uint + 1u)
}
2012-01-17 19:28:21 -06:00
fn op3() -> result::result<int, ~str> { result::err(~"sadface") }
2012-01-17 19:28:21 -06:00
#[test]
fn chain_success() {
assert get(chain(op1(), op2)) == 667u;
}
#[test]
fn chain_failure() {
assert get_err(chain(op3(), op2)) == ~"sadface";
2012-01-17 19:28:21 -06:00
}
#[test]
fn test_impl_iter() {
let mut valid = false;
ok::<~str, ~str>(~"a").iter(|_x| valid = true);
assert valid;
err::<~str, ~str>(~"b").iter(|_x| valid = false);
assert valid;
}
#[test]
fn test_impl_iter_err() {
let mut valid = true;
ok::<~str, ~str>(~"a").iter_err(|_x| valid = false);
assert valid;
valid = false;
err::<~str, ~str>(~"b").iter_err(|_x| valid = true);
assert valid;
}
#[test]
fn test_impl_map() {
assert ok::<~str, ~str>(~"a").map(|_x| ~"b") == ok(~"b");
assert err::<~str, ~str>(~"a").map(|_x| ~"b") == err(~"a");
}
#[test]
fn test_impl_map_err() {
assert ok::<~str, ~str>(~"a").map_err(|_x| ~"b") == ok(~"a");
assert err::<~str, ~str>(~"a").map_err(|_x| ~"b") == err(~"b");
}
2012-01-17 19:28:21 -06:00
}