rust/tests/ui/abi/compatibility.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

356 lines
11 KiB
Rust
Raw Normal View History

// check-pass
// revisions: host
// revisions: arm
//[arm] compile-flags: --target arm-unknown-linux-gnueabi
//[arm] needs-llvm-components: arm
// revisions: aarch64
//[aarch64] compile-flags: --target aarch64-unknown-linux-gnu
//[aarch64] needs-llvm-components: aarch64
// revisions: s390x
//[s390x] compile-flags: --target s390x-unknown-linux-gnu
//[s390x] needs-llvm-components: systemz
// revisions: mips
//[mips] compile-flags: --target mips-unknown-linux-gnu
//[mips] needs-llvm-components: mips
// revisions: mips64
//[mips64] compile-flags: --target mips64-unknown-linux-gnuabi64
//[mips64] needs-llvm-components: mips
// revisions: sparc
//[sparc] compile-flags: --target sparc-unknown-linux-gnu
//[sparc] needs-llvm-components: sparc
// revisions: sparc64
//[sparc64] compile-flags: --target sparc64-unknown-linux-gnu
//[sparc64] needs-llvm-components: sparc
// revisions: powerpc64
//[powerpc64] compile-flags: --target powerpc64-unknown-linux-gnu
//[powerpc64] needs-llvm-components: powerpc
// revisions: riscv
//[riscv] compile-flags: --target riscv64gc-unknown-linux-gnu
//[riscv] needs-llvm-components: riscv
// revisions: loongarch64
//[loongarch64] compile-flags: --target loongarch64-unknown-linux-gnu
//[loongarch64] needs-llvm-components: loongarch
//[loongarch64] min-llvm-version: 17
// revisions: wasm
//[wasm] compile-flags: --target wasm32-unknown-unknown
//[wasm] needs-llvm-components: webassembly
// revisions: wasi
//[wasi] compile-flags: --target wasm32-wasi
//[wasi] needs-llvm-components: webassembly
// revisions: nvptx64
//[nvptx64] compile-flags: --target nvptx64-nvidia-cuda
//[nvptx64] needs-llvm-components: nvptx
#![feature(rustc_attrs, unsized_fn_params, transparent_unions)]
#![cfg_attr(not(host), feature(no_core, lang_items), no_std, no_core)]
#![allow(unused, improper_ctypes_definitions, internal_features)]
// FIXME: some targets are broken in various ways.
// Hence there are `cfg` throughout this test to disable parts of it on those targets.
// sparc64: https://github.com/rust-lang/rust/issues/115336
// mips64: https://github.com/rust-lang/rust/issues/115404
#[cfg(host)]
use std::{
any::Any, marker::PhantomData, mem::ManuallyDrop, num::NonZeroI32, ptr::NonNull, rc::Rc,
sync::Arc,
};
/// To work cross-target this test must be no_core.
/// This little prelude supplies what we need.
#[cfg(not(host))]
mod prelude {
#[lang = "sized"]
pub trait Sized {}
#[lang = "receiver"]
pub trait Receiver {}
impl<T: ?Sized> Receiver for &T {}
impl<T: ?Sized> Receiver for &mut T {}
#[lang = "copy"]
pub trait Copy: Sized {}
impl Copy for i32 {}
impl Copy for f32 {}
impl<T: ?Sized> Copy for &T {}
impl<T: ?Sized> Copy for *const T {}
impl<T: ?Sized> Copy for *mut T {}
#[lang = "clone"]
pub trait Clone: Sized {
fn clone(&self) -> Self;
}
#[lang = "phantom_data"]
pub struct PhantomData<T: ?Sized>;
impl<T: ?Sized> Copy for PhantomData<T> {}
#[lang = "unsafe_cell"]
#[repr(transparent)]
pub struct UnsafeCell<T: ?Sized> {
value: T,
}
pub trait Any: 'static {}
pub enum Option<T> {
None,
Some(T),
}
impl<T: Copy> Copy for Option<T> {}
pub enum Result<T, E> {
Ok(T),
Err(E),
}
impl<T: Copy, E: Copy> Copy for Result<T, E> {}
#[lang = "manually_drop"]
#[repr(transparent)]
pub struct ManuallyDrop<T: ?Sized> {
value: T,
}
impl<T: Copy + ?Sized> Copy for ManuallyDrop<T> {}
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
#[rustc_nonnull_optimization_guaranteed]
pub struct NonNull<T: ?Sized> {
pointer: *const T,
}
impl<T: ?Sized> Copy for NonNull<T> {}
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
#[rustc_nonnull_optimization_guaranteed]
pub struct NonZeroI32(i32);
// This just stands in for a non-trivial type.
pub struct Vec<T> {
ptr: NonNull<T>,
cap: usize,
len: usize,
}
pub struct Unique<T: ?Sized> {
pub pointer: NonNull<T>,
pub _marker: PhantomData<T>,
}
pub struct Global;
#[lang = "owned_box"]
pub struct Box<T: ?Sized, A = Global>(Unique<T>, A);
#[repr(C)]
struct RcBox<T: ?Sized> {
strong: UnsafeCell<usize>,
weak: UnsafeCell<usize>,
value: T,
}
pub struct Rc<T: ?Sized, A = Global> {
ptr: NonNull<RcBox<T>>,
phantom: PhantomData<RcBox<T>>,
alloc: A,
}
#[repr(C, align(8))]
struct AtomicUsize(usize);
#[repr(C)]
struct ArcInner<T: ?Sized> {
strong: AtomicUsize,
weak: AtomicUsize,
data: T,
}
pub struct Arc<T: ?Sized, A = Global> {
ptr: NonNull<ArcInner<T>>,
phantom: PhantomData<ArcInner<T>>,
alloc: A,
}
}
#[cfg(not(host))]
use prelude::*;
macro_rules! assert_abi_compatible {
($name:ident, $t1:ty, $t2:ty) => {
mod $name {
use super::*;
// Declaring a `type` doesn't even check well-formedness, so we also declare a function.
fn check_wf(_x: $t1, _y: $t2) {}
// Test argument and return value, `Rust` and `C` ABIs.
#[rustc_abi(assert_eq)]
type TestRust = (fn($t1) -> $t1, fn($t2) -> $t2);
#[rustc_abi(assert_eq)]
type TestC = (extern "C" fn($t1) -> $t1, extern "C" fn($t2) -> $t2);
}
};
}
struct Zst;
impl Copy for Zst {}
impl Clone for Zst {
fn clone(&self) -> Self {
Zst
}
}
#[repr(C)]
struct ReprC1<T: ?Sized>(T);
#[repr(C)]
struct ReprC2Int<T>(i32, T);
#[repr(C)]
struct ReprC2Float<T>(f32, T);
#[repr(C)]
struct ReprC4<T>(T, Vec<i32>, Zst, T);
#[repr(C)]
struct ReprC4Mixed<T>(T, f32, i32, T);
#[repr(C)]
enum ReprCEnum<T> {
Variant1,
Variant2(T),
}
#[repr(C)]
union ReprCUnion<T> {
nothing: (),
something: ManuallyDrop<T>,
}
macro_rules! test_abi_compatible {
($name:ident, $t1:ty, $t2:ty) => {
mod $name {
use super::*;
assert_abi_compatible!(plain, $t1, $t2);
// We also do some tests with differences in fields of `repr(C)` types.
assert_abi_compatible!(repr_c_1, ReprC1<$t1>, ReprC1<$t2>);
assert_abi_compatible!(repr_c_2_int, ReprC2Int<$t1>, ReprC2Int<$t2>);
assert_abi_compatible!(repr_c_2_float, ReprC2Float<$t1>, ReprC2Float<$t2>);
assert_abi_compatible!(repr_c_4, ReprC4<$t1>, ReprC4<$t2>);
assert_abi_compatible!(repr_c_4mixed, ReprC4Mixed<$t1>, ReprC4Mixed<$t2>);
assert_abi_compatible!(repr_c_enum, ReprCEnum<$t1>, ReprCEnum<$t2>);
assert_abi_compatible!(repr_c_union, ReprCUnion<$t1>, ReprCUnion<$t2>);
}
};
}
// Compatibility of pointers is probably de-facto guaranteed,
// but that does not seem to be documented.
test_abi_compatible!(ptr_mut, *const i32, *mut i32);
test_abi_compatible!(ptr_pointee, *const i32, *const Vec<i32>);
test_abi_compatible!(ref_mut, &i32, &mut i32);
test_abi_compatible!(ref_ptr, &i32, *const i32);
test_abi_compatible!(box_ptr, Box<i32>, *const i32);
test_abi_compatible!(nonnull_ptr, NonNull<i32>, *const i32);
test_abi_compatible!(fn_fn, fn(), fn(i32) -> i32);
// Some further guarantees we will likely (have to) make.
test_abi_compatible!(zst_unit, Zst, ());
#[cfg(not(any(target_arch = "sparc64")))]
test_abi_compatible!(zst_array, Zst, [u8; 0]);
test_abi_compatible!(nonzero_int, NonZeroI32, i32);
// `DispatchFromDyn` relies on ABI compatibility.
// This is interesting since these types are not `repr(transparent)`.
test_abi_compatible!(rc, Rc<i32>, *mut i32);
test_abi_compatible!(arc, Arc<i32>, *mut i32);
// `repr(transparent)` compatibility.
#[repr(transparent)]
struct Wrapper1<T: ?Sized>(T);
#[repr(transparent)]
struct Wrapper2<T: ?Sized>((), Zst, T);
#[repr(transparent)]
struct Wrapper3<T>(T, [u8; 0], PhantomData<u64>);
#[repr(transparent)]
union WrapperUnion<T> {
nothing: (),
something: ManuallyDrop<T>,
}
macro_rules! test_transparent {
($name:ident, $t:ty) => {
mod $name {
use super::*;
test_abi_compatible!(wrap1, $t, Wrapper1<$t>);
test_abi_compatible!(wrap2, $t, Wrapper2<$t>);
test_abi_compatible!(wrap3, $t, Wrapper3<$t>);
test_abi_compatible!(wrap4, $t, WrapperUnion<$t>);
}
};
}
test_transparent!(simple, i32);
test_transparent!(reference, &'static i32);
test_transparent!(zst, Zst);
test_transparent!(unit, ());
test_transparent!(enum_, Option<i32>);
test_transparent!(enum_niched, Option<&'static i32>);
#[cfg(not(any(target_arch = "mips64", target_arch = "sparc64")))]
mod tuples {
use super::*;
// mixing in some floats since they often get special treatment
test_transparent!(pair, (i32, f32));
// chosen to fit into 64bit
test_transparent!(triple, (i8, i16, f32));
// Pure-float types that are not ScalarPair seem to be tricky.
test_transparent!(triple_f32, (f32, f32, f32));
test_transparent!(triple_f64, (f64, f64, f64));
// and also something that's larger than 2 pointers
test_transparent!(tuple, (i32, f32, i64, f64));
}
// Some targets have special rules for arrays.
#[cfg(not(any(target_arch = "mips64", target_arch = "sparc64")))]
mod arrays {
use super::*;
test_transparent!(empty_array, [u32; 0]);
test_transparent!(empty_1zst_array, [u8; 0]);
test_transparent!(small_array, [i32; 2]); // chosen to fit into 64bit
test_transparent!(large_array, [i32; 16]);
}
// Some tests with unsized types (not all wrappers are compatible with that).
macro_rules! test_transparent_unsized {
($name:ident, $t:ty) => {
mod $name {
use super::*;
assert_abi_compatible!(wrap1, $t, Wrapper1<$t>);
assert_abi_compatible!(wrap1_reprc, ReprC1<$t>, ReprC1<Wrapper1<$t>>);
assert_abi_compatible!(wrap2, $t, Wrapper2<$t>);
assert_abi_compatible!(wrap2_reprc, ReprC1<$t>, ReprC1<Wrapper2<$t>>);
}
};
}
#[cfg(not(any(target_arch = "mips64", target_arch = "sparc64")))]
mod unsized_ {
use super::*;
test_transparent_unsized!(str_, str);
test_transparent_unsized!(slice, [u8]);
test_transparent_unsized!(dyn_trait, dyn Any);
}
2023-09-02 06:19:40 -05:00
// RFC 3391 <https://rust-lang.github.io/rfcs/3391-result_ffi_guarantees.html>.
macro_rules! test_nonnull {
($name:ident, $t:ty) => {
mod $name {
use super::*;
test_abi_compatible!(option, Option<$t>, $t);
test_abi_compatible!(result_err_unit, Result<$t, ()>, $t);
test_abi_compatible!(result_ok_unit, Result<(), $t>, $t);
test_abi_compatible!(result_err_zst, Result<$t, Zst>, $t);
test_abi_compatible!(result_ok_zst, Result<Zst, $t>, $t);
test_abi_compatible!(result_err_arr, Result<$t, [i8; 0]>, $t);
test_abi_compatible!(result_ok_arr, Result<[i8; 0], $t>, $t);
}
}
}
test_nonnull!(ref_, &i32);
test_nonnull!(mut_, &mut i32);
test_nonnull!(ref_unsized, &[i32]);
test_nonnull!(mut_unsized, &mut [i32]);
test_nonnull!(fn_, fn());
test_nonnull!(nonnull, NonNull<i32>);
test_nonnull!(nonnull_unsized, NonNull<dyn Any>);
2023-09-02 06:19:40 -05:00
test_nonnull!(non_zero, NonZeroI32);
fn main() {}