363 lines
14 KiB
Rust
Raw Normal View History

/*
* The compiler code necessary to support the #fmt extension. Eventually this
* should all get sucked into either the standard library extfmt module or the
* compiler syntax extension plugin interface.
*/
import std::vec;
import std::str;
import std::option;
import std::option::none;
import std::option::some;
import std::extfmt::ct::*;
import base::*;
import codemap::span;
export expand_syntax_ext;
fn expand_syntax_ext(cx: &ext_ctxt, sp: span, arg: @ast::expr,
_body: &option::t<istr>) -> @ast::expr {
let args: [@ast::expr] =
alt arg.node {
ast::expr_vec(elts, _) { elts }
_ {
cx.span_fatal(
sp, ~"#fmt requires arguments of the form `[...]`.")
}
};
if vec::len::<@ast::expr>(args) == 0u {
cx.span_fatal(sp, ~"#fmt requires a format string");
}
let fmt =
expr_to_str(cx, args[0],
~"first argument to #fmt must be a "
+ ~"string literal.");
let fmtspan = args[0].span;
log "Format string:";
log fmt;
fn parse_fmt_err_(cx: &ext_ctxt, sp: span, msg: &istr) -> ! {
cx.span_fatal(sp, msg);
}
let parse_fmt_err = bind parse_fmt_err_(cx, fmtspan, _);
let pieces = parse_fmt_string(fmt, parse_fmt_err);
ret pieces_to_expr(cx, sp, pieces, args);
}
// FIXME: A lot of these functions for producing expressions can probably
// be factored out in common with other code that builds expressions.
// FIXME: Cleanup the naming of these functions
fn pieces_to_expr(cx: &ext_ctxt, sp: span, pieces: &[piece],
args: &[@ast::expr]) -> @ast::expr {
fn make_new_lit(cx: &ext_ctxt, sp: span, lit: ast::lit_) -> @ast::expr {
let sp_lit = @{node: lit, span: sp};
ret @{id: cx.next_id(), node: ast::expr_lit(sp_lit), span: sp};
}
fn make_new_str(cx: &ext_ctxt, sp: span, s: &istr) -> @ast::expr {
let lit = ast::lit_str(s, ast::sk_unique);
ret make_new_lit(cx, sp, lit);
}
fn make_new_int(cx: &ext_ctxt, sp: span, i: int) -> @ast::expr {
let lit = ast::lit_int(i);
ret make_new_lit(cx, sp, lit);
}
fn make_new_uint(cx: &ext_ctxt, sp: span, u: uint) -> @ast::expr {
let lit = ast::lit_uint(u);
ret make_new_lit(cx, sp, lit);
}
fn make_add_expr(cx: &ext_ctxt, sp: span, lhs: @ast::expr,
rhs: @ast::expr) -> @ast::expr {
let binexpr = ast::expr_binary(ast::add, lhs, rhs);
ret @{id: cx.next_id(), node: binexpr, span: sp};
}
fn make_path_expr(cx: &ext_ctxt, sp: span, idents: &[ast::ident]) ->
@ast::expr {
let path = {global: false, idents: idents, types: []};
let sp_path = {node: path, span: sp};
let pathexpr = ast::expr_path(sp_path);
ret @{id: cx.next_id(), node: pathexpr, span: sp};
}
fn make_vec_expr(cx: &ext_ctxt, sp: span, exprs: &[@ast::expr]) ->
@ast::expr {
let vecexpr = ast::expr_vec(exprs, ast::imm);
ret @{id: cx.next_id(), node: vecexpr, span: sp};
}
fn make_call(cx: &ext_ctxt, sp: span, fn_path: &[ast::ident],
args: &[@ast::expr]) -> @ast::expr {
let pathexpr = make_path_expr(cx, sp, fn_path);
let callexpr = ast::expr_call(pathexpr, args);
ret @{id: cx.next_id(), node: callexpr, span: sp};
}
fn make_rec_expr(cx: &ext_ctxt, sp: span,
fields: &[{ident: ast::ident, ex: @ast::expr}]) ->
@ast::expr {
let astfields: [ast::field] = [];
for field: {ident: ast::ident, ex: @ast::expr} in fields {
let ident = field.ident;
let val = field.ex;
let astfield =
{node: {mut: ast::imm, ident: ident, expr: val}, span: sp};
astfields += [astfield];
}
let recexpr = ast::expr_rec(astfields, option::none::<@ast::expr>);
ret @{id: cx.next_id(), node: recexpr, span: sp};
}
fn make_path_vec(cx: &ext_ctxt, ident: &ast::ident) -> [ast::ident] {
fn compiling_std(cx: &ext_ctxt) -> bool {
ret str::find(cx.crate_file_name(), ~"std.rc") >= 0;
}
if compiling_std(cx) {
ret [~"extfmt", ~"rt", ident];
} else { ret [~"std", ~"extfmt", ~"rt", ident]; }
}
fn make_rt_path_expr(cx: &ext_ctxt, sp: span,
ident: &istr) -> @ast::expr {
let path = make_path_vec(cx, ident);
ret make_path_expr(cx, sp, path);
}
// Produces an AST expression that represents a RT::conv record,
// which tells the RT::conv* functions how to perform the conversion
fn make_rt_conv_expr(cx: &ext_ctxt, sp: span, cnv: &conv) -> @ast::expr {
fn make_flags(cx: &ext_ctxt, sp: span, flags: &[flag]) -> @ast::expr {
let flagexprs: [@ast::expr] = [];
for f: flag in flags {
let fstr;
alt f {
flag_left_justify. { fstr = ~"flag_left_justify"; }
flag_left_zero_pad. { fstr = ~"flag_left_zero_pad"; }
flag_space_for_sign. { fstr = ~"flag_space_for_sign"; }
flag_sign_always. { fstr = ~"flag_sign_always"; }
flag_alternate. { fstr = ~"flag_alternate"; }
}
flagexprs += [make_rt_path_expr(cx, sp, fstr)];
}
// FIXME: 0-length vectors can't have their type inferred
// through the rec that these flags are a member of, so
// this is a hack placeholder flag
if vec::len::<@ast::expr>(flagexprs) == 0u {
flagexprs += [make_rt_path_expr(cx, sp, ~"flag_none")];
}
ret make_vec_expr(cx, sp, flagexprs);
}
fn make_count(cx: &ext_ctxt, sp: span, cnt: &count) -> @ast::expr {
alt cnt {
count_implied. {
ret make_rt_path_expr(cx, sp, ~"count_implied");
}
count_is(c) {
let count_lit = make_new_int(cx, sp, c);
let count_is_path = make_path_vec(cx, ~"count_is");
let count_is_args = [count_lit];
ret make_call(cx, sp, count_is_path, count_is_args);
}
_ { cx.span_unimpl(sp, ~"unimplemented #fmt conversion"); }
}
}
fn make_ty(cx: &ext_ctxt, sp: span, t: &ty) -> @ast::expr {
let rt_type;
alt t {
ty_hex(c) {
alt c {
case_upper. { rt_type = ~"ty_hex_upper"; }
case_lower. { rt_type = ~"ty_hex_lower"; }
}
}
ty_bits. { rt_type = ~"ty_bits"; }
ty_octal. { rt_type = ~"ty_octal"; }
_ { rt_type = ~"ty_default"; }
}
ret make_rt_path_expr(cx, sp, rt_type);
}
fn make_conv_rec(cx: &ext_ctxt, sp: span, flags_expr: @ast::expr,
width_expr: @ast::expr, precision_expr: @ast::expr,
ty_expr: @ast::expr) -> @ast::expr {
ret make_rec_expr(cx, sp,
[{ident: ~"flags", ex: flags_expr},
{ident: ~"width", ex: width_expr},
{ident: ~"precision", ex: precision_expr},
{ident: ~"ty", ex: ty_expr}]);
}
let rt_conv_flags = make_flags(cx, sp, cnv.flags);
let rt_conv_width = make_count(cx, sp, cnv.width);
let rt_conv_precision = make_count(cx, sp, cnv.precision);
let rt_conv_ty = make_ty(cx, sp, cnv.ty);
ret make_conv_rec(cx, sp, rt_conv_flags, rt_conv_width,
rt_conv_precision, rt_conv_ty);
}
fn make_conv_call(cx: &ext_ctxt, sp: span, conv_type: &istr,
cnv: &conv, arg: @ast::expr) -> @ast::expr {
let fname = ~"conv_" + conv_type;
let path = make_path_vec(cx, fname);
let cnv_expr = make_rt_conv_expr(cx, sp, cnv);
let args = [cnv_expr, arg];
ret make_call(cx, arg.span, path, args);
}
fn make_new_conv(cx: &ext_ctxt, sp: span, cnv: conv, arg: @ast::expr) ->
@ast::expr {
// FIXME: Extract all this validation into extfmt::ct
fn is_signed_type(cnv: conv) -> bool {
alt cnv.ty {
ty_int(s) {
alt s { signed. { ret true; } unsigned. { ret false; } }
}
_ { ret false; }
}
}
let unsupported = ~"conversion not supported in #fmt string";
alt cnv.param {
option::none. { }
_ { cx.span_unimpl(sp, unsupported); }
}
for f: flag in cnv.flags {
alt f {
flag_left_justify. { }
flag_sign_always. {
if !is_signed_type(cnv) {
cx.span_fatal(sp,
~"+ flag only valid in " +
~"signed #fmt conversion");
}
}
flag_space_for_sign. {
if !is_signed_type(cnv) {
cx.span_fatal(sp,
~"space flag only valid in " +
~"signed #fmt conversions");
}
}
flag_left_zero_pad. { }
_ { cx.span_unimpl(sp, unsupported); }
}
}
alt cnv.width {
count_implied. { }
count_is(_) { }
_ { cx.span_unimpl(sp, unsupported); }
}
alt cnv.precision {
count_implied. { }
count_is(_) { }
_ { cx.span_unimpl(sp, unsupported); }
}
alt cnv.ty {
ty_str. { ret make_conv_call(cx, arg.span, ~"str", cnv, arg); }
ty_int(sign) {
alt sign {
signed. { ret make_conv_call(cx, arg.span, ~"int", cnv, arg); }
unsigned. {
ret make_conv_call(cx, arg.span, ~"uint", cnv, arg);
}
}
}
ty_bool. { ret make_conv_call(cx, arg.span, ~"bool", cnv, arg); }
ty_char. { ret make_conv_call(cx, arg.span, ~"char", cnv, arg); }
ty_hex(_) { ret make_conv_call(cx, arg.span, ~"uint", cnv, arg); }
ty_bits. { ret make_conv_call(cx, arg.span, ~"uint", cnv, arg); }
ty_octal. { ret make_conv_call(cx, arg.span, ~"uint", cnv, arg); }
_ { cx.span_unimpl(sp, unsupported); }
}
}
fn log_conv(c: conv) {
alt c.param {
some(p) {
log ~"param: " + std::int::to_str(p, 10u);
}
_ { log "param: none"; }
}
for f: flag in c.flags {
alt f {
flag_left_justify. { log "flag: left justify"; }
flag_left_zero_pad. { log "flag: left zero pad"; }
flag_space_for_sign. { log "flag: left space pad"; }
flag_sign_always. { log "flag: sign always"; }
flag_alternate. { log "flag: alternate"; }
}
}
alt c.width {
count_is(i) { log ~"width: count is "
+ std::int::to_str(i, 10u); }
count_is_param(i) {
log ~"width: count is param "
+ std::int::to_str(i, 10u);
}
count_is_next_param. { log "width: count is next param"; }
count_implied. { log "width: count is implied"; }
}
alt c.precision {
count_is(i) { log ~"prec: count is "
+ std::int::to_str(i, 10u); }
count_is_param(i) {
log ~"prec: count is param "
+ std::int::to_str(i, 10u);
}
count_is_next_param. { log "prec: count is next param"; }
count_implied. { log "prec: count is implied"; }
}
alt c.ty {
ty_bool. { log "type: bool"; }
ty_str. { log "type: str"; }
ty_char. { log "type: char"; }
ty_int(s) {
alt s {
signed. { log "type: signed"; }
unsigned. { log "type: unsigned"; }
}
}
ty_bits. { log "type: bits"; }
ty_hex(cs) {
alt cs {
case_upper. { log "type: uhex"; }
case_lower. { log "type: lhex"; }
}
}
ty_octal. { log "type: octal"; }
}
}
let fmt_sp = args[0].span;
let n = 0u;
let tmp_expr = make_new_str(cx, sp, ~"");
let nargs = vec::len::<@ast::expr>(args);
for pc: piece in pieces {
alt pc {
piece_string(s) {
let s_expr = make_new_str(cx, fmt_sp, s);
tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, s_expr);
}
piece_conv(conv) {
n += 1u;
if n >= nargs {
cx.span_fatal(sp,
~"not enough arguments to #fmt " +
~"for the given format string");
}
log "Building conversion:";
log_conv(conv);
let arg_expr = args[n];
let c_expr = make_new_conv(cx, fmt_sp, conv, arg_expr);
tmp_expr = make_add_expr(cx, fmt_sp, tmp_expr, c_expr);
}
}
}
let expected_nargs = n + 1u; // n conversions + the fmt string
if expected_nargs < nargs {
cx.span_fatal(
sp,
#fmt["too many arguments to #fmt. found %u, expected %u",
nargs, expected_nargs]);
}
ret tmp_expr;
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//