rust/src/primval.rs

414 lines
13 KiB
Rust
Raw Normal View History

2016-07-07 06:19:17 -05:00
#![allow(unknown_lints)]
#![allow(float_cmp)]
use std::mem::transmute;
use rustc::mir;
use error::{EvalError, EvalResult};
use memory::{AllocId, Pointer};
fn bits_to_f32(bits: u64) -> f32 {
unsafe { transmute::<u32, f32>(bits as u32) }
}
fn bits_to_f64(bits: u64) -> f64 {
unsafe { transmute::<u64, f64>(bits) }
}
fn f32_to_bits(f: f32) -> u64 {
unsafe { transmute::<f32, u32>(f) as u64 }
}
fn f64_to_bits(f: f64) -> u64 {
unsafe { transmute::<f64, u64>(f) }
}
fn bits_to_bool(n: u64) -> bool {
// FIXME(solson): Can we reach here due to user error?
debug_assert!(n == 0 || n == 1, "bits interpreted as bool were {}", n);
n & 1 == 1
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct PrimVal {
pub bits: u64,
/// This field is initialized when the `PrimVal` represents a pointer into an `Allocation`. An
/// `Allocation` in the `memory` module has a list of relocations, but a `PrimVal` is only
/// large enough to contain one, hence the `Option`.
pub relocation: Option<AllocId>,
// FIXME(solson): I think we can make this field unnecessary, or at least move it outside of
// this struct. We can either match over `Ty`s or generate simple `PrimVal`s from `Ty`s and
// match over those to decide which operations to perform on `PrimVal`s.
pub kind: PrimValKind,
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PrimValKind {
I8, I16, I32, I64,
U8, U16, U32, U64,
F32, F64,
Bool,
Char,
Ptr,
FnPtr,
}
impl PrimValKind {
pub fn is_int(self) -> bool {
use self::PrimValKind::*;
match self {
I8 | I16 | I32 | I64 | U8 | U16 | U32 | U64 => true,
_ => false,
}
}
pub fn from_uint_size(size: u64) -> Self {
match size {
1 => PrimValKind::U8,
2 => PrimValKind::U16,
4 => PrimValKind::U32,
8 => PrimValKind::U64,
_ => bug!("can't make uint with size {}", size),
}
}
pub fn from_int_size(size: u64) -> Self {
match size {
1 => PrimValKind::I8,
2 => PrimValKind::I16,
4 => PrimValKind::I32,
8 => PrimValKind::I64,
_ => bug!("can't make int with size {}", size),
}
}
}
impl PrimVal {
pub fn new(bits: u64, kind: PrimValKind) -> Self {
PrimVal { bits: bits, relocation: None, kind: kind }
}
pub fn new_with_relocation(bits: u64, kind: PrimValKind, alloc_id: AllocId) -> Self {
PrimVal { bits: bits, relocation: Some(alloc_id), kind: kind }
}
pub fn from_ptr(ptr: Pointer) -> Self {
PrimVal::new_with_relocation(ptr.offset as u64, PrimValKind::Ptr, ptr.alloc_id)
}
pub fn from_fn_ptr(ptr: Pointer) -> Self {
PrimVal::new_with_relocation(ptr.offset as u64, PrimValKind::FnPtr, ptr.alloc_id)
}
pub fn from_bool(b: bool) -> Self {
PrimVal::new(b as u64, PrimValKind::Bool)
}
pub fn from_char(c: char) -> Self {
PrimVal::new(c as u64, PrimValKind::Char)
}
pub fn from_f32(f: f32) -> Self {
PrimVal::new(f32_to_bits(f), PrimValKind::F32)
}
pub fn from_f64(f: f64) -> Self {
PrimVal::new(f64_to_bits(f), PrimValKind::F64)
}
pub fn from_uint_with_size(n: u64, size: u64) -> Self {
PrimVal::new(n, PrimValKind::from_uint_size(size))
}
pub fn from_int_with_size(n: i64, size: u64) -> Self {
PrimVal::new(n as u64, PrimValKind::from_int_size(size))
}
pub fn to_f32(self) -> f32 {
assert!(self.relocation.is_none());
bits_to_f32(self.bits)
}
pub fn to_f64(self) -> f64 {
assert!(self.relocation.is_none());
bits_to_f64(self.bits)
}
pub fn to_ptr(self) -> Pointer {
self.relocation.map(|alloc_id| {
Pointer::new(alloc_id, self.bits)
}).unwrap_or_else(|| Pointer::from_int(self.bits))
}
pub fn try_as_uint<'tcx>(self) -> EvalResult<'tcx, u64> {
self.to_ptr().to_int().map(|val| val as u64)
}
pub fn expect_uint(self, error_msg: &str) -> u64 {
if let Ok(int) = self.try_as_uint() {
return int;
}
use self::PrimValKind::*;
match self.kind {
U8 | U16 | U32 | U64 => self.bits,
_ => bug!("{}", error_msg),
}
}
pub fn expect_int(self, error_msg: &str) -> i64 {
if let Ok(int) = self.try_as_uint() {
return int as i64;
}
use self::PrimValKind::*;
match self.kind {
I8 | I16 | I32 | I64 => self.bits as i64,
_ => bug!("{}", error_msg),
}
}
pub fn try_as_bool<'tcx>(self) -> EvalResult<'tcx, bool> {
match self.bits {
0 => Ok(false),
1 => Ok(true),
_ => Err(EvalError::InvalidBool),
}
}
pub fn expect_f32(self, error_msg: &str) -> f32 {
match self.kind {
PrimValKind::F32 => bits_to_f32(self.bits),
_ => bug!("{}", error_msg),
}
}
pub fn expect_f64(self, error_msg: &str) -> f64 {
match self.kind {
PrimValKind::F32 => bits_to_f64(self.bits),
_ => bug!("{}", error_msg),
}
}
}
////////////////////////////////////////////////////////////////////////////////
// MIR operator evaluation
////////////////////////////////////////////////////////////////////////////////
macro_rules! overflow {
($kind:expr, $op:ident, $l:expr, $r:expr) => ({
let (val, overflowed) = $l.$op($r);
let primval = PrimVal::new(val as u64, $kind);
Ok((primval, overflowed))
})
}
2016-06-17 06:09:20 -05:00
macro_rules! int_arithmetic {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
match $kind {
I8 => overflow!(I8, $int_op, l as i8, r as i8),
I16 => overflow!(I16, $int_op, l as i16, r as i16),
I32 => overflow!(I32, $int_op, l as i32, r as i32),
I64 => overflow!(I64, $int_op, l as i64, r as i64),
U8 => overflow!(U8, $int_op, l as u8, r as u8),
U16 => overflow!(U16, $int_op, l as u16, r as u16),
U32 => overflow!(U32, $int_op, l as u32, r as u32),
U64 => overflow!(U64, $int_op, l as u64, r as u64),
_ => bug!("int_arithmetic should only be called on int primvals"),
2016-04-23 01:39:38 -05:00
}
})
}
macro_rules! int_shift {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
match $kind {
I8 => overflow!(I8, $int_op, l as i8, r),
I16 => overflow!(I16, $int_op, l as i16, r),
I32 => overflow!(I32, $int_op, l as i32, r),
I64 => overflow!(I64, $int_op, l as i64, r),
U8 => overflow!(U8, $int_op, l as u8, r),
U16 => overflow!(U16, $int_op, l as u16, r),
U32 => overflow!(U32, $int_op, l as u32, r),
U64 => overflow!(U64, $int_op, l as u64, r),
_ => bug!("int_shift should only be called on int primvals"),
}
})
}
macro_rules! float_arithmetic {
($kind:expr, $from_bits:ident, $to_bits:ident, $float_op:tt, $l:expr, $r:expr) => ({
let l = $from_bits($l);
let r = $from_bits($r);
let bits = $to_bits(l $float_op r);
PrimVal::new(bits, $kind)
})
}
macro_rules! f32_arithmetic {
($float_op:tt, $l:expr, $r:expr) => (
float_arithmetic!(F32, bits_to_f32, f32_to_bits, $float_op, $l, $r)
)
}
macro_rules! f64_arithmetic {
($float_op:tt, $l:expr, $r:expr) => (
float_arithmetic!(F64, bits_to_f64, f64_to_bits, $float_op, $l, $r)
)
}
2016-04-23 01:39:38 -05:00
/// Returns the result of the specified operation and whether it overflowed.
pub fn binary_op<'tcx>(
bin_op: mir::BinOp,
left: PrimVal,
right: PrimVal
) -> EvalResult<'tcx, (PrimVal, bool)> {
use rustc::mir::BinOp::*;
use self::PrimValKind::*;
// If the pointers are into the same allocation, fall through to the more general match
// later, which will do comparisons on the `bits` fields, which are the pointer offsets
// in this case.
let left_ptr = left.to_ptr();
let right_ptr = right.to_ptr();
if left_ptr.alloc_id != right_ptr.alloc_id {
return Ok((unrelated_ptr_ops(bin_op, left_ptr, right_ptr)?, false));
}
let (l, r) = (left.bits, right.bits);
// These ops can have an RHS with a different numeric type.
if bin_op == Shl || bin_op == Shr {
// These are the maximum values a bitshift RHS could possibly have. For example, u16
// can be bitshifted by 0..16, so masking with 0b1111 (16 - 1) will ensure we are in
// that range.
let type_bits: u32 = match left.kind {
I8 | U8 => 8,
I16 | U16 => 16,
I32 | U32 => 32,
I64 | U64 => 64,
_ => bug!("bad MIR: bitshift lhs is not integral"),
};
// Cast to `u32` because `overflowing_sh{l,r}` only take `u32`, then apply the bitmask
// to ensure it's within the valid shift value range.
let r = (right.bits as u32) & (type_bits - 1);
return match bin_op {
Shl => int_shift!(left.kind, overflowing_shl, l, r),
Shr => int_shift!(left.kind, overflowing_shr, l, r),
_ => bug!("it has already been checked that this is a shift op"),
};
}
if left.kind != right.kind {
let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op);
return Err(EvalError::Unimplemented(msg));
}
let val = match (bin_op, left.kind) {
(Eq, F32) => PrimVal::from_bool(bits_to_f32(l) == bits_to_f32(r)),
(Ne, F32) => PrimVal::from_bool(bits_to_f32(l) != bits_to_f32(r)),
(Lt, F32) => PrimVal::from_bool(bits_to_f32(l) < bits_to_f32(r)),
(Le, F32) => PrimVal::from_bool(bits_to_f32(l) <= bits_to_f32(r)),
(Gt, F32) => PrimVal::from_bool(bits_to_f32(l) > bits_to_f32(r)),
(Ge, F32) => PrimVal::from_bool(bits_to_f32(l) >= bits_to_f32(r)),
(Eq, F64) => PrimVal::from_bool(bits_to_f64(l) == bits_to_f64(r)),
(Ne, F64) => PrimVal::from_bool(bits_to_f64(l) != bits_to_f64(r)),
(Lt, F64) => PrimVal::from_bool(bits_to_f64(l) < bits_to_f64(r)),
(Le, F64) => PrimVal::from_bool(bits_to_f64(l) <= bits_to_f64(r)),
(Gt, F64) => PrimVal::from_bool(bits_to_f64(l) > bits_to_f64(r)),
(Ge, F64) => PrimVal::from_bool(bits_to_f64(l) >= bits_to_f64(r)),
(Add, F32) => f32_arithmetic!(+, l, r),
(Sub, F32) => f32_arithmetic!(-, l, r),
(Mul, F32) => f32_arithmetic!(*, l, r),
(Div, F32) => f32_arithmetic!(/, l, r),
(Rem, F32) => f32_arithmetic!(%, l, r),
(Add, F64) => f64_arithmetic!(+, l, r),
(Sub, F64) => f64_arithmetic!(-, l, r),
(Mul, F64) => f64_arithmetic!(*, l, r),
(Div, F64) => f64_arithmetic!(/, l, r),
(Rem, F64) => f64_arithmetic!(%, l, r),
(Eq, _) => PrimVal::from_bool(l == r),
(Ne, _) => PrimVal::from_bool(l != r),
(Lt, _) => PrimVal::from_bool(l < r),
(Le, _) => PrimVal::from_bool(l <= r),
(Gt, _) => PrimVal::from_bool(l > r),
(Ge, _) => PrimVal::from_bool(l >= r),
(BitOr, k) => PrimVal::new(l | r, k),
(BitAnd, k) => PrimVal::new(l & r, k),
(BitXor, k) => PrimVal::new(l ^ r, k),
(Add, k) if k.is_int() => return int_arithmetic!(k, overflowing_add, l, r),
(Sub, k) if k.is_int() => return int_arithmetic!(k, overflowing_sub, l, r),
(Mul, k) if k.is_int() => return int_arithmetic!(k, overflowing_mul, l, r),
(Div, k) if k.is_int() => return int_arithmetic!(k, overflowing_div, l, r),
(Rem, k) if k.is_int() => return int_arithmetic!(k, overflowing_rem, l, r),
_ => {
let msg = format!("unimplemented binary op: {:?}, {:?}, {:?}", left, right, bin_op);
return Err(EvalError::Unimplemented(msg));
}
};
Ok((val, false))
}
fn unrelated_ptr_ops<'tcx>(bin_op: mir::BinOp, left: Pointer, right: Pointer) -> EvalResult<'tcx, PrimVal> {
use rustc::mir::BinOp::*;
match bin_op {
Eq => Ok(PrimVal::from_bool(false)),
Ne => Ok(PrimVal::from_bool(true)),
Lt | Le | Gt | Ge => Err(EvalError::InvalidPointerMath),
_ if left.to_int().is_ok() ^ right.to_int().is_ok() => {
Err(EvalError::ReadPointerAsBytes)
},
_ => bug!(),
}
}
pub fn unary_op<'tcx>(un_op: mir::UnOp, val: PrimVal) -> EvalResult<'tcx, PrimVal> {
use rustc::mir::UnOp::*;
use self::PrimValKind::*;
let bits = match (un_op, val.kind) {
(Not, Bool) => !bits_to_bool(val.bits) as u64,
(Not, U8) => !(val.bits as u8) as u64,
(Not, U16) => !(val.bits as u16) as u64,
(Not, U32) => !(val.bits as u32) as u64,
(Not, U64) => !val.bits,
(Not, I8) => !(val.bits as i8) as u64,
(Not, I16) => !(val.bits as i16) as u64,
(Not, I32) => !(val.bits as i32) as u64,
(Not, I64) => !(val.bits as i64) as u64,
(Neg, I8) => -(val.bits as i8) as u64,
(Neg, I16) => -(val.bits as i16) as u64,
(Neg, I32) => -(val.bits as i32) as u64,
(Neg, I64) => -(val.bits as i64) as u64,
(Neg, F32) => f32_to_bits(-bits_to_f32(val.bits)),
(Neg, F64) => f64_to_bits(-bits_to_f64(val.bits)),
_ => {
let msg = format!("unimplemented unary op: {:?}, {:?}", un_op, val);
return Err(EvalError::Unimplemented(msg));
}
};
Ok(PrimVal::new(bits, val.kind))
}