1331 lines
51 KiB
Rust
Raw Normal View History

//! Util methods for [`rustc_middle::ty`]
#![allow(clippy::module_name_repetitions)]
use core::ops::ControlFlow;
use itertools::Itertools;
use rustc_ast::ast::Mutability;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::{Expr, FnDecl, LangItem, TyKind, Unsafety};
use rustc_infer::infer::TyCtxtInferExt;
use rustc_lint::LateContext;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::ConstValue;
use rustc_middle::traits::EvaluationResult;
use rustc_middle::ty::layout::ValidityRequirement;
use rustc_middle::ty::{
self, AdtDef, AliasTy, AssocKind, Binder, BoundRegion, FnSig, GenericArg, GenericArgKind, GenericArgsRef,
GenericParamDefKind, IntTy, ParamEnv, Region, RegionKind, ToPredicate, TraitRef, Ty, TyCtxt, TypeSuperVisitable,
TypeVisitable, TypeVisitableExt, TypeVisitor, UintTy, VariantDef, VariantDiscr,
};
use rustc_span::symbol::Ident;
2022-11-18 19:58:07 +00:00
use rustc_span::{sym, Span, Symbol, DUMMY_SP};
use rustc_target::abi::{Size, VariantIdx};
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
2022-11-25 17:28:50 +00:00
use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
use rustc_trait_selection::traits::{Obligation, ObligationCause};
use std::assert_matches::debug_assert_matches;
use std::collections::hash_map::Entry;
use std::iter;
use crate::{def_path_def_ids, match_def_path, path_res};
mod type_certainty;
pub use type_certainty::expr_type_is_certain;
/// Checks if the given type implements copy.
pub fn is_copy<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
2022-10-27 18:32:17 +04:00
ty.is_copy_modulo_regions(cx.tcx, cx.param_env)
}
/// This checks whether a given type is known to implement Debug.
pub fn has_debug_impl<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
cx.tcx
.get_diagnostic_item(sym::Debug)
.map_or(false, |debug| implements_trait(cx, ty, debug, &[]))
}
/// Checks whether a type can be partially moved.
pub fn can_partially_move_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
if has_drop(cx, ty) || is_copy(cx, ty) {
return false;
}
match ty.kind() {
ty::Param(_) => false,
ty::Adt(def, subs) => def.all_fields().any(|f| !is_copy(cx, f.ty(cx.tcx, subs))),
_ => true,
}
}
/// Walks into `ty` and returns `true` if any inner type is an instance of the given adt
/// constructor.
2022-05-23 08:48:17 -07:00
pub fn contains_adt_constructor<'tcx>(ty: Ty<'tcx>, adt: AdtDef<'tcx>) -> bool {
2022-01-12 03:19:52 +00:00
ty.walk().any(|inner| match inner.unpack() {
GenericArgKind::Type(inner_ty) => inner_ty.ty_adt_def() == Some(adt),
GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false,
})
}
/// Walks into `ty` and returns `true` if any inner type is an instance of the given type, or adt
/// constructor of the same type.
///
/// This method also recurses into opaque type predicates, so call it with `impl Trait<U>` and `U`
/// will also return `true`.
pub fn contains_ty_adt_constructor_opaque<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, needle: Ty<'tcx>) -> bool {
fn contains_ty_adt_constructor_opaque_inner<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
needle: Ty<'tcx>,
seen: &mut FxHashSet<DefId>,
) -> bool {
ty.walk().any(|inner| match inner.unpack() {
GenericArgKind::Type(inner_ty) => {
if inner_ty == needle {
return true;
}
if inner_ty.ty_adt_def() == needle.ty_adt_def() {
return true;
}
if let ty::Alias(ty::Opaque, AliasTy { def_id, .. }) = *inner_ty.kind() {
if !seen.insert(def_id) {
return false;
}
for (predicate, _span) in cx
.tcx
.explicit_item_super_predicates(def_id)
.instantiate_identity_iter_copied()
{
match predicate.kind().skip_binder() {
// For `impl Trait<U>`, it will register a predicate of `T: Trait<U>`, so we go through
// and check substitutions to find `U`.
2023-06-19 20:46:46 +00:00
ty::ClauseKind::Trait(trait_predicate) => {
if trait_predicate
.trait_ref
.args
.types()
.skip(1) // Skip the implicit `Self` generic parameter
.any(|ty| contains_ty_adt_constructor_opaque_inner(cx, ty, needle, seen))
{
return true;
}
},
// For `impl Trait<Assoc=U>`, it will register a predicate of `<T as Trait>::Assoc = U`,
// so we check the term for `U`.
2023-06-19 20:46:46 +00:00
ty::ClauseKind::Projection(projection_predicate) => {
if let ty::TermKind::Ty(ty) = projection_predicate.term.unpack() {
if contains_ty_adt_constructor_opaque_inner(cx, ty, needle, seen) {
return true;
}
};
},
_ => (),
}
}
}
false
},
GenericArgKind::Lifetime(_) | GenericArgKind::Const(_) => false,
})
}
// A hash set to ensure that the same opaque type (`impl Trait` in RPIT or TAIT) is not
// visited twice.
let mut seen = FxHashSet::default();
contains_ty_adt_constructor_opaque_inner(cx, ty, needle, &mut seen)
}
/// Resolves `<T as Iterator>::Item` for `T`
/// Do not invoke without first verifying that the type implements `Iterator`
pub fn get_iterator_item_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
cx.tcx
.get_diagnostic_item(sym::Iterator)
.and_then(|iter_did| cx.get_associated_type(ty, iter_did, "Item"))
}
/// Get the diagnostic name of a type, e.g. `sym::HashMap`. To check if a type
/// implements a trait marked with a diagnostic item use [`implements_trait`].
///
/// For a further exploitation what diagnostic items are see [diagnostic items] in
/// rustc-dev-guide.
///
/// [Diagnostic Items]: https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html
pub fn get_type_diagnostic_name(cx: &LateContext<'_>, ty: Ty<'_>) -> Option<Symbol> {
match ty.kind() {
ty::Adt(adt, _) => cx.tcx.get_diagnostic_name(adt.did()),
_ => None,
}
}
/// Returns true if `ty` is a type on which calling `Clone` through a function instead of
/// as a method, such as `Arc::clone()` is considered idiomatic. Lints should avoid suggesting to
/// replace instances of `ty::Clone()` by `.clone()` for objects of those types.
pub fn should_call_clone_as_function(cx: &LateContext<'_>, ty: Ty<'_>) -> bool {
matches!(
get_type_diagnostic_name(cx, ty),
Some(sym::Arc | sym::ArcWeak | sym::Rc | sym::RcWeak)
)
}
/// Returns true if ty has `iter` or `iter_mut` methods
pub fn has_iter_method(cx: &LateContext<'_>, probably_ref_ty: Ty<'_>) -> Option<Symbol> {
// FIXME: instead of this hard-coded list, we should check if `<adt>::iter`
// exists and has the desired signature. Unfortunately FnCtxt is not exported
// so we can't use its `lookup_method` method.
let into_iter_collections: &[Symbol] = &[
2021-10-02 18:51:01 -05:00
sym::Vec,
sym::Option,
sym::Result,
sym::BTreeMap,
sym::BTreeSet,
2021-10-02 18:51:01 -05:00
sym::VecDeque,
sym::LinkedList,
sym::BinaryHeap,
2021-10-02 18:51:01 -05:00
sym::HashSet,
sym::HashMap,
sym::PathBuf,
sym::Path,
sym::Receiver,
];
let ty_to_check = match probably_ref_ty.kind() {
2022-01-25 14:13:38 +11:00
ty::Ref(_, ty_to_check, _) => *ty_to_check,
_ => probably_ref_ty,
};
let def_id = match ty_to_check.kind() {
ty::Array(..) => return Some(sym::array),
ty::Slice(..) => return Some(sym::slice),
ty::Adt(adt, _) => adt.did(),
_ => return None,
};
for &name in into_iter_collections {
if cx.tcx.is_diagnostic_item(name, def_id) {
return Some(cx.tcx.item_name(def_id));
}
}
None
}
/// Checks whether a type implements a trait.
2021-07-06 05:38:15 -04:00
/// The function returns false in case the type contains an inference variable.
///
/// See:
/// * [`get_trait_def_id`](super::get_trait_def_id) to get a trait [`DefId`].
/// * [Common tools for writing lints] for an example how to use this function and other options.
///
/// [Common tools for writing lints]: https://github.com/rust-lang/rust-clippy/blob/master/book/src/development/common_tools_writing_lints.md#checking-if-a-type-implements-a-specific-trait
pub fn implements_trait<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
trait_id: DefId,
args: &[GenericArg<'tcx>],
) -> bool {
2024-01-15 12:26:45 -05:00
implements_trait_with_env_from_iter(cx.tcx, cx.param_env, ty, trait_id, None, args.iter().map(|&x| Some(x)))
}
/// Same as `implements_trait` but allows using a `ParamEnv` different from the lint context.
2024-01-15 12:26:45 -05:00
///
/// The `callee_id` argument is used to determine whether this is a function call in a `const fn`
/// environment, used for checking const traits.
pub fn implements_trait_with_env<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
ty: Ty<'tcx>,
trait_id: DefId,
2024-01-15 12:26:45 -05:00
callee_id: Option<DefId>,
args: &[GenericArg<'tcx>],
) -> bool {
2024-01-15 12:26:45 -05:00
implements_trait_with_env_from_iter(tcx, param_env, ty, trait_id, callee_id, args.iter().map(|&x| Some(x)))
}
/// Same as `implements_trait_from_env` but takes the arguments as an iterator.
pub fn implements_trait_with_env_from_iter<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
ty: Ty<'tcx>,
trait_id: DefId,
2023-12-10 13:06:18 +00:00
callee_id: Option<DefId>,
args: impl IntoIterator<Item = impl Into<Option<GenericArg<'tcx>>>>,
) -> bool {
2021-07-06 05:38:15 -04:00
// Clippy shouldn't have infer types
2023-04-27 08:34:11 +01:00
assert!(!ty.has_infer());
2021-07-06 05:38:15 -04:00
// If a `callee_id` is passed, then we assert that it is a body owner
// through calling `body_owner_kind`, which would panic if the callee
// does not have a body.
2024-01-15 12:26:45 -05:00
if let Some(callee_id) = callee_id {
let _ = tcx.hir().body_owner_kind(callee_id);
}
let ty = tcx.erase_regions(ty);
if ty.has_escaping_bound_vars() {
return false;
}
let infcx = tcx.infer_ctxt().build();
let args = args
.into_iter()
.map(|arg| arg.into().unwrap_or_else(|| infcx.next_ty_var(DUMMY_SP).into()))
.collect::<Vec<_>>();
2023-12-10 13:06:18 +00:00
// If an effect arg was not specified, we need to specify it.
let effect_arg = if tcx
.generics_of(trait_id)
.host_effect_index
.is_some_and(|x| args.get(x - 1).is_none())
{
Some(GenericArg::from(callee_id.map_or(tcx.consts.true_, |def_id| {
tcx.expected_host_effect_param_for_body(def_id)
})))
2023-12-10 13:06:18 +00:00
} else {
None
};
let trait_ref = TraitRef::new(
tcx,
trait_id,
Some(GenericArg::from(ty)).into_iter().chain(args).chain(effect_arg),
);
debug_assert_matches!(
tcx.def_kind(trait_id),
DefKind::Trait | DefKind::TraitAlias,
"`DefId` must belong to a trait or trait alias"
);
#[cfg(debug_assertions)]
assert_generic_args_match(tcx, trait_id, trait_ref.args);
let obligation = Obligation {
cause: ObligationCause::dummy(),
param_env,
recursion_depth: 0,
predicate: Binder::dummy(trait_ref).to_predicate(tcx),
};
infcx
.evaluate_obligation(&obligation)
.is_ok_and(EvaluationResult::must_apply_modulo_regions)
}
/// Checks whether this type implements `Drop`.
pub fn has_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.ty_adt_def() {
Some(def) => def.has_dtor(cx.tcx),
None => false,
}
}
// Returns whether the type has #[must_use] attribute
pub fn is_must_use_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind() {
2022-04-26 14:04:23 +02:00
ty::Adt(adt, _) => cx.tcx.has_attr(adt.did(), sym::must_use),
ty::Foreign(did) => cx.tcx.has_attr(*did, sym::must_use),
ty::Slice(ty) | ty::Array(ty, _) | ty::RawPtr(ty, _) | ty::Ref(_, ty, _) => {
// for the Array case we don't need to care for the len == 0 case
// because we don't want to lint functions returning empty arrays
is_must_use_ty(cx, *ty)
2022-08-30 12:44:00 -07:00
},
ty::Tuple(args) => args.iter().any(|ty| is_must_use_ty(cx, ty)),
ty::Alias(ty::Opaque, AliasTy { def_id, .. }) => {
for (predicate, _) in cx.tcx.explicit_item_super_predicates(def_id).skip_binder() {
2023-06-19 20:46:46 +00:00
if let ty::ClauseKind::Trait(trait_predicate) = predicate.kind().skip_binder() {
2022-04-26 14:04:23 +02:00
if cx.tcx.has_attr(trait_predicate.trait_ref.def_id, sym::must_use) {
return true;
}
}
}
false
2022-08-30 12:44:00 -07:00
},
2022-08-30 12:39:28 -07:00
ty::Dynamic(binder, _, _) => {
for predicate in *binder {
if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
2022-04-26 14:04:23 +02:00
if cx.tcx.has_attr(trait_ref.def_id, sym::must_use) {
return true;
}
}
}
false
2022-08-30 12:44:00 -07:00
},
_ => false,
}
}
// FIXME: Per https://doc.rust-lang.org/nightly/nightly-rustc/rustc_trait_selection/infer/at/struct.At.html#method.normalize
2021-04-26 18:19:23 +00:00
// this function can be removed once the `normalize` method does not panic when normalization does
// not succeed
/// Checks if `Ty` is normalizable. This function is useful
/// to avoid crashes on `layout_of`.
pub fn is_normalizable<'tcx>(cx: &LateContext<'tcx>, param_env: ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool {
is_normalizable_helper(cx, param_env, ty, &mut FxHashMap::default())
}
fn is_normalizable_helper<'tcx>(
cx: &LateContext<'tcx>,
param_env: ParamEnv<'tcx>,
ty: Ty<'tcx>,
cache: &mut FxHashMap<Ty<'tcx>, bool>,
) -> bool {
2022-01-25 14:13:38 +11:00
if let Some(&cached_result) = cache.get(&ty) {
return cached_result;
}
// prevent recursive loops, false-negative is better than endless loop leading to stack overflow
cache.insert(ty, false);
let infcx = cx.tcx.infer_ctxt().build();
let cause = ObligationCause::dummy();
2022-11-25 17:28:50 +00:00
let result = if infcx.at(&cause, param_env).query_normalize(ty).is_ok() {
match ty.kind() {
ty::Adt(def, args) => def.variants().iter().all(|variant| {
variant
.fields
.iter()
.all(|field| is_normalizable_helper(cx, param_env, field.ty(cx.tcx, args), cache))
}),
_ => ty.walk().all(|generic_arg| match generic_arg.unpack() {
GenericArgKind::Type(inner_ty) if inner_ty != ty => {
is_normalizable_helper(cx, param_env, inner_ty, cache)
},
_ => true, // if inner_ty == ty, we've already checked it
}),
}
} else {
false
};
cache.insert(ty, result);
result
}
/// Returns `true` if the given type is a non aggregate primitive (a `bool` or `char`, any
/// integer or floating-point number type). For checking aggregation of primitive types (e.g.
/// tuples and slices of primitive type) see `is_recursively_primitive_type`
pub fn is_non_aggregate_primitive_type(ty: Ty<'_>) -> bool {
matches!(ty.kind(), ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_))
}
/// Returns `true` if the given type is a primitive (a `bool` or `char`, any integer or
/// floating-point number type, a `str`, or an array, slice, or tuple of those types).
pub fn is_recursively_primitive_type(ty: Ty<'_>) -> bool {
2022-02-07 16:06:55 +01:00
match *ty.kind() {
ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str => true,
ty::Ref(_, inner, _) if inner.is_str() => true,
2022-08-30 12:44:00 -07:00
ty::Array(inner_type, _) | ty::Slice(inner_type) => is_recursively_primitive_type(inner_type),
2022-02-07 16:06:55 +01:00
ty::Tuple(inner_types) => inner_types.iter().all(is_recursively_primitive_type),
_ => false,
}
}
/// Checks if the type is a reference equals to a diagnostic item
pub fn is_type_ref_to_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool {
match ty.kind() {
ty::Ref(_, ref_ty, _) => match ref_ty.kind() {
ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did()),
_ => false,
},
_ => false,
}
}
/// Checks if the type is equal to a diagnostic item. To check if a type implements a
/// trait marked with a diagnostic item use [`implements_trait`].
///
/// For a further exploitation what diagnostic items are see [diagnostic items] in
/// rustc-dev-guide.
///
/// ---
///
/// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem`
///
/// [Diagnostic Items]: https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-items.html
pub fn is_type_diagnostic_item(cx: &LateContext<'_>, ty: Ty<'_>, diag_item: Symbol) -> bool {
match ty.kind() {
ty::Adt(adt, _) => cx.tcx.is_diagnostic_item(diag_item, adt.did()),
_ => false,
}
}
/// Checks if the type is equal to a lang item.
///
/// Returns `false` if the `LangItem` is not defined.
pub fn is_type_lang_item(cx: &LateContext<'_>, ty: Ty<'_>, lang_item: LangItem) -> bool {
match ty.kind() {
2022-10-26 17:01:00 -05:00
ty::Adt(adt, _) => cx.tcx.lang_items().get(lang_item) == Some(adt.did()),
_ => false,
}
}
/// Gets the diagnostic name of the type, if it has one
pub fn type_diagnostic_name(cx: &LateContext<'_>, ty: Ty<'_>) -> Option<Symbol> {
ty.ty_adt_def().and_then(|adt| cx.tcx.get_diagnostic_name(adt.did()))
}
/// Return `true` if the passed `typ` is `isize` or `usize`.
pub fn is_isize_or_usize(typ: Ty<'_>) -> bool {
matches!(typ.kind(), ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize))
}
/// Checks if type is struct, enum or union type with the given def path.
///
/// If the type is a diagnostic item, use `is_type_diagnostic_item` instead.
/// If you change the signature, remember to update the internal lint `MatchTypeOnDiagItem`
pub fn match_type(cx: &LateContext<'_>, ty: Ty<'_>, path: &[&str]) -> bool {
match ty.kind() {
ty::Adt(adt, _) => match_def_path(cx, adt.did(), path),
_ => false,
}
}
/// Checks if the drop order for a type matters. Some std types implement drop solely to
/// deallocate memory. For these types, and composites containing them, changing the drop order
/// won't result in any observable side effects.
pub fn needs_ordered_drop<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
2022-08-30 12:44:00 -07:00
fn needs_ordered_drop_inner<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>, seen: &mut FxHashSet<Ty<'tcx>>) -> bool {
if !seen.insert(ty) {
return false;
}
if !ty.has_significant_drop(cx.tcx, cx.param_env) {
false
}
// Check for std types which implement drop, but only for memory allocation.
else if is_type_lang_item(cx, ty, LangItem::OwnedBox)
|| matches!(
get_type_diagnostic_name(cx, ty),
2023-09-26 23:56:38 -04:00
Some(sym::HashSet | sym::Rc | sym::Arc | sym::cstring_type | sym::RcWeak | sym::ArcWeak)
)
{
// Check all of the generic arguments.
if let ty::Adt(_, subs) = ty.kind() {
subs.types().any(|ty| needs_ordered_drop_inner(cx, ty, seen))
} else {
true
}
} else if !cx
.tcx
.lang_items()
.drop_trait()
.map_or(false, |id| implements_trait(cx, ty, id, &[]))
{
// This type doesn't implement drop, so no side effects here.
// Check if any component type has any.
match ty.kind() {
ty::Tuple(fields) => fields.iter().any(|ty| needs_ordered_drop_inner(cx, ty, seen)),
ty::Array(ty, _) => needs_ordered_drop_inner(cx, *ty, seen),
ty::Adt(adt, subs) => adt
.all_fields()
.map(|f| f.ty(cx.tcx, subs))
.any(|ty| needs_ordered_drop_inner(cx, ty, seen)),
_ => true,
}
} else {
true
}
}
needs_ordered_drop_inner(cx, ty, &mut FxHashSet::default())
}
/// Peels off all references on the type. Returns the underlying type and the number of references
/// removed.
pub fn peel_mid_ty_refs(ty: Ty<'_>) -> (Ty<'_>, usize) {
fn peel(ty: Ty<'_>, count: usize) -> (Ty<'_>, usize) {
2022-08-30 12:44:00 -07:00
if let ty::Ref(_, ty, _) = ty.kind() {
peel(*ty, count + 1)
} else {
(ty, count)
}
}
peel(ty, 0)
}
/// Peels off all references on the type. Returns the underlying type, the number of references
/// removed, and whether the pointer is ultimately mutable or not.
pub fn peel_mid_ty_refs_is_mutable(ty: Ty<'_>) -> (Ty<'_>, usize, Mutability) {
fn f(ty: Ty<'_>, count: usize, mutability: Mutability) -> (Ty<'_>, usize, Mutability) {
match ty.kind() {
2022-01-25 14:13:38 +11:00
ty::Ref(_, ty, Mutability::Mut) => f(*ty, count + 1, mutability),
ty::Ref(_, ty, Mutability::Not) => f(*ty, count + 1, Mutability::Not),
_ => (ty, count, mutability),
}
}
f(ty, 0, Mutability::Mut)
}
/// Returns `true` if the given type is an `unsafe` function.
pub fn type_is_unsafe_function<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.kind() {
ty::FnDef(..) | ty::FnPtr(_) => ty.fn_sig(cx.tcx).unsafety() == Unsafety::Unsafe,
_ => false,
}
}
/// Returns the base type for HIR references and pointers.
pub fn walk_ptrs_hir_ty<'tcx>(ty: &'tcx hir::Ty<'tcx>) -> &'tcx hir::Ty<'tcx> {
match ty.kind {
TyKind::Ptr(ref mut_ty) | TyKind::Ref(_, ref mut_ty) => walk_ptrs_hir_ty(mut_ty.ty),
_ => ty,
}
}
/// Returns the base type for references and raw pointers, and count reference
/// depth.
pub fn walk_ptrs_ty_depth(ty: Ty<'_>) -> (Ty<'_>, usize) {
fn inner(ty: Ty<'_>, depth: usize) -> (Ty<'_>, usize) {
match ty.kind() {
2022-01-25 14:13:38 +11:00
ty::Ref(_, ty, _) => inner(*ty, depth + 1),
_ => (ty, depth),
}
}
inner(ty, 0)
}
/// Returns `true` if types `a` and `b` are same types having same `Const` generic args,
/// otherwise returns `false`
pub fn same_type_and_consts<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match (&a.kind(), &b.kind()) {
(&ty::Adt(did_a, args_a), &ty::Adt(did_b, args_b)) => {
if did_a != did_b {
return false;
}
args_a
2022-08-30 12:44:00 -07:00
.iter()
.zip(args_b.iter())
2022-08-30 12:44:00 -07:00
.all(|(arg_a, arg_b)| match (arg_a.unpack(), arg_b.unpack()) {
(GenericArgKind::Const(inner_a), GenericArgKind::Const(inner_b)) => inner_a == inner_b,
(GenericArgKind::Type(type_a), GenericArgKind::Type(type_b)) => {
same_type_and_consts(type_a, type_b)
2022-08-30 12:44:00 -07:00
},
_ => true,
2022-08-30 12:44:00 -07:00
})
},
_ => a == b,
}
}
/// Checks if a given type looks safe to be uninitialized.
pub fn is_uninit_value_valid_for_ty<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
cx.tcx
.check_validity_requirement((ValidityRequirement::Uninit, cx.param_env.and(ty)))
.unwrap_or_else(|_| is_uninit_value_valid_for_ty_fallback(cx, ty))
}
/// A fallback for polymorphic types, which are not supported by `check_validity_requirement`.
fn is_uninit_value_valid_for_ty_fallback<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match *ty.kind() {
// The array length may be polymorphic, let's try the inner type.
ty::Array(component, _) => is_uninit_value_valid_for_ty(cx, component),
// Peek through tuples and try their fallbacks.
ty::Tuple(types) => types.iter().all(|ty| is_uninit_value_valid_for_ty(cx, ty)),
// Unions are always fine right now.
// This includes MaybeUninit, the main way people use uninitialized memory.
// For ADTs, we could look at all fields just like for tuples, but that's potentially
// exponential, so let's avoid doing that for now. Code doing that is sketchy enough to
// just use an `#[allow()]`.
ty::Adt(adt, _) => adt.is_union(),
// For the rest, conservatively assume that they cannot be uninit.
_ => false,
}
}
/// Gets an iterator over all predicates which apply to the given item.
pub fn all_predicates_of(tcx: TyCtxt<'_>, id: DefId) -> impl Iterator<Item = &(ty::Clause<'_>, Span)> {
let mut next_id = Some(id);
iter::from_fn(move || {
next_id.take().map(|id| {
let preds = tcx.predicates_of(id);
next_id = preds.parent;
preds.predicates.iter()
})
})
.flatten()
}
/// A signature for a function like type.
#[derive(Clone, Copy)]
pub enum ExprFnSig<'tcx> {
Sig(Binder<'tcx, FnSig<'tcx>>, Option<DefId>),
Closure(Option<&'tcx FnDecl<'tcx>>, Binder<'tcx, FnSig<'tcx>>),
Trait(Binder<'tcx, Ty<'tcx>>, Option<Binder<'tcx, Ty<'tcx>>>, Option<DefId>),
}
impl<'tcx> ExprFnSig<'tcx> {
/// Gets the argument type at the given offset. This will return `None` when the index is out of
/// bounds only for variadic functions, otherwise this will panic.
pub fn input(self, i: usize) -> Option<Binder<'tcx, Ty<'tcx>>> {
match self {
Self::Sig(sig, _) => {
if sig.c_variadic() {
sig.inputs().map_bound(|inputs| inputs.get(i).copied()).transpose()
} else {
Some(sig.input(i))
}
2022-08-30 12:44:00 -07:00
},
Self::Closure(_, sig) => Some(sig.input(0).map_bound(|ty| ty.tuple_fields()[i])),
Self::Trait(inputs, _, _) => Some(inputs.map_bound(|ty| ty.tuple_fields()[i])),
}
}
/// Gets the argument type at the given offset. For closures this will also get the type as
/// written. This will return `None` when the index is out of bounds only for variadic
/// functions, otherwise this will panic.
2022-08-30 12:44:00 -07:00
pub fn input_with_hir(self, i: usize) -> Option<(Option<&'tcx hir::Ty<'tcx>>, Binder<'tcx, Ty<'tcx>>)> {
match self {
Self::Sig(sig, _) => {
if sig.c_variadic() {
sig.inputs()
.map_bound(|inputs| inputs.get(i).copied())
.transpose()
.map(|arg| (None, arg))
} else {
Some((None, sig.input(i)))
}
2022-08-30 12:44:00 -07:00
},
Self::Closure(decl, sig) => Some((
decl.and_then(|decl| decl.inputs.get(i)),
sig.input(0).map_bound(|ty| ty.tuple_fields()[i]),
)),
Self::Trait(inputs, _, _) => Some((None, inputs.map_bound(|ty| ty.tuple_fields()[i]))),
}
}
/// Gets the result type, if one could be found. Note that the result type of a trait may not be
/// specified.
pub fn output(self) -> Option<Binder<'tcx, Ty<'tcx>>> {
match self {
Self::Sig(sig, _) | Self::Closure(_, sig) => Some(sig.output()),
Self::Trait(_, output, _) => output,
}
}
pub fn predicates_id(&self) -> Option<DefId> {
2022-08-30 12:44:00 -07:00
if let ExprFnSig::Sig(_, id) | ExprFnSig::Trait(_, _, id) = *self {
id
} else {
None
}
}
}
/// If the expression is function like, get the signature for it.
pub fn expr_sig<'tcx>(cx: &LateContext<'tcx>, expr: &Expr<'_>) -> Option<ExprFnSig<'tcx>> {
2022-08-30 12:44:00 -07:00
if let Res::Def(DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::AssocFn, id) = path_res(cx, expr) {
Some(ExprFnSig::Sig(cx.tcx.fn_sig(id).instantiate_identity(), Some(id)))
} else {
ty_sig(cx, cx.typeck_results().expr_ty_adjusted(expr).peel_refs())
}
}
/// If the type is function like, get the signature for it.
pub fn ty_sig<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> Option<ExprFnSig<'tcx>> {
if ty.is_box() {
return ty_sig(cx, ty.boxed_ty());
}
match *ty.kind() {
ty::Closure(id, subs) => {
2022-08-30 12:44:00 -07:00
let decl = id
.as_local()
.and_then(|id| cx.tcx.hir().fn_decl_by_hir_id(cx.tcx.local_def_id_to_hir_id(id)));
Some(ExprFnSig::Closure(decl, subs.as_closure().sig()))
2022-08-30 12:44:00 -07:00
},
ty::FnDef(id, subs) => Some(ExprFnSig::Sig(cx.tcx.fn_sig(id).instantiate(cx.tcx, subs), Some(id))),
ty::Alias(ty::Opaque, AliasTy { def_id, args, .. }) => sig_from_bounds(
cx,
ty,
cx.tcx.item_super_predicates(def_id).iter_instantiated(cx.tcx, args),
cx.tcx.opt_parent(def_id),
),
ty::FnPtr(sig) => Some(ExprFnSig::Sig(sig, None)),
2022-08-30 12:39:28 -07:00
ty::Dynamic(bounds, _, _) => {
let lang_items = cx.tcx.lang_items();
match bounds.principal() {
Some(bound)
if Some(bound.def_id()) == lang_items.fn_trait()
|| Some(bound.def_id()) == lang_items.fn_once_trait()
|| Some(bound.def_id()) == lang_items.fn_mut_trait() =>
{
let output = bounds
.projection_bounds()
2022-08-30 12:44:00 -07:00
.find(|p| lang_items.fn_once_output().map_or(false, |id| id == p.item_def_id()))
.map(|p| p.map_bound(|p| p.term.ty().unwrap()));
Some(ExprFnSig::Trait(bound.map_bound(|b| b.args.type_at(0)), output, None))
2022-08-30 12:44:00 -07:00
},
_ => None,
}
2022-08-30 12:44:00 -07:00
},
ty::Alias(ty::Projection, proj) => match cx.tcx.try_normalize_erasing_regions(cx.param_env, ty) {
Ok(normalized_ty) if normalized_ty != ty => ty_sig(cx, normalized_ty),
2022-08-30 12:44:00 -07:00
_ => sig_for_projection(cx, proj).or_else(|| sig_from_bounds(cx, ty, cx.param_env.caller_bounds(), None)),
},
ty::Param(_) => sig_from_bounds(cx, ty, cx.param_env.caller_bounds(), None),
_ => None,
}
}
fn sig_from_bounds<'tcx>(
cx: &LateContext<'tcx>,
ty: Ty<'tcx>,
predicates: impl IntoIterator<Item = ty::Clause<'tcx>>,
predicates_id: Option<DefId>,
) -> Option<ExprFnSig<'tcx>> {
let mut inputs = None;
let mut output = None;
let lang_items = cx.tcx.lang_items();
for pred in predicates {
match pred.kind().skip_binder() {
ty::ClauseKind::Trait(p)
if (lang_items.fn_trait() == Some(p.def_id())
|| lang_items.fn_mut_trait() == Some(p.def_id())
|| lang_items.fn_once_trait() == Some(p.def_id()))
&& p.self_ty() == ty =>
{
let i = pred.kind().rebind(p.trait_ref.args.type_at(1));
if inputs.map_or(false, |inputs| i != inputs) {
// Multiple different fn trait impls. Is this even allowed?
return None;
}
inputs = Some(i);
2022-08-30 12:44:00 -07:00
},
ty::ClauseKind::Projection(p)
if Some(p.projection_term.def_id) == lang_items.fn_once_output()
&& p.projection_term.self_ty() == ty =>
{
if output.is_some() {
// Multiple different fn trait impls. Is this even allowed?
return None;
}
output = Some(pred.kind().rebind(p.term.ty().unwrap()));
2022-08-30 12:44:00 -07:00
},
_ => (),
}
}
inputs.map(|ty| ExprFnSig::Trait(ty, output, predicates_id))
}
fn sig_for_projection<'tcx>(cx: &LateContext<'tcx>, ty: AliasTy<'tcx>) -> Option<ExprFnSig<'tcx>> {
let mut inputs = None;
let mut output = None;
let lang_items = cx.tcx.lang_items();
for (pred, _) in cx
.tcx
.explicit_item_bounds(ty.def_id)
.iter_instantiated_copied(cx.tcx, ty.args)
{
match pred.kind().skip_binder() {
2023-06-19 20:46:46 +00:00
ty::ClauseKind::Trait(p)
if (lang_items.fn_trait() == Some(p.def_id())
|| lang_items.fn_mut_trait() == Some(p.def_id())
|| lang_items.fn_once_trait() == Some(p.def_id())) =>
{
let i = pred.kind().rebind(p.trait_ref.args.type_at(1));
if inputs.map_or(false, |inputs| inputs != i) {
// Multiple different fn trait impls. Is this even allowed?
return None;
}
inputs = Some(i);
2022-08-30 12:44:00 -07:00
},
2024-05-13 10:00:38 -04:00
ty::ClauseKind::Projection(p) if Some(p.projection_term.def_id) == lang_items.fn_once_output() => {
if output.is_some() {
// Multiple different fn trait impls. Is this even allowed?
return None;
}
output = pred.kind().rebind(p.term.ty()).transpose();
2022-08-30 12:44:00 -07:00
},
_ => (),
}
}
inputs.map(|ty| ExprFnSig::Trait(ty, output, None))
}
#[derive(Clone, Copy)]
pub enum EnumValue {
Unsigned(u128),
Signed(i128),
}
impl core::ops::Add<u32> for EnumValue {
type Output = Self;
fn add(self, n: u32) -> Self::Output {
match self {
Self::Unsigned(x) => Self::Unsigned(x + u128::from(n)),
Self::Signed(x) => Self::Signed(x + i128::from(n)),
}
}
}
/// Attempts to read the given constant as though it were an enum value.
#[expect(clippy::cast_possible_truncation, clippy::cast_possible_wrap)]
pub fn read_explicit_enum_value(tcx: TyCtxt<'_>, id: DefId) -> Option<EnumValue> {
if let Ok(ConstValue::Scalar(Scalar::Int(value))) = tcx.const_eval_poly(id) {
match tcx.type_of(id).instantiate_identity().kind() {
ty::Int(_) => Some(EnumValue::Signed(match value.size().bytes() {
1 => i128::from(value.assert_bits(Size::from_bytes(1)) as u8 as i8),
2 => i128::from(value.assert_bits(Size::from_bytes(2)) as u16 as i16),
4 => i128::from(value.assert_bits(Size::from_bytes(4)) as u32 as i32),
8 => i128::from(value.assert_bits(Size::from_bytes(8)) as u64 as i64),
16 => value.assert_bits(Size::from_bytes(16)) as i128,
_ => return None,
})),
ty::Uint(_) => Some(EnumValue::Unsigned(match value.size().bytes() {
1 => value.assert_bits(Size::from_bytes(1)),
2 => value.assert_bits(Size::from_bytes(2)),
4 => value.assert_bits(Size::from_bytes(4)),
8 => value.assert_bits(Size::from_bytes(8)),
16 => value.assert_bits(Size::from_bytes(16)),
_ => return None,
})),
_ => None,
}
} else {
None
}
}
/// Gets the value of the given variant.
pub fn get_discriminant_value(tcx: TyCtxt<'_>, adt: AdtDef<'_>, i: VariantIdx) -> EnumValue {
let variant = &adt.variant(i);
match variant.discr {
VariantDiscr::Explicit(id) => read_explicit_enum_value(tcx, id).unwrap(),
VariantDiscr::Relative(x) => match adt.variant((i.as_usize() - x as usize).into()).discr {
VariantDiscr::Explicit(id) => read_explicit_enum_value(tcx, id).unwrap() + x,
VariantDiscr::Relative(_) => EnumValue::Unsigned(x.into()),
},
}
}
/// Check if the given type is either `core::ffi::c_void`, `std::os::raw::c_void`, or one of the
/// platform specific `libc::<platform>::c_void` types in libc.
pub fn is_c_void(cx: &LateContext<'_>, ty: Ty<'_>) -> bool {
if let ty::Adt(adt, _) = ty.kind()
&& let &[krate, .., name] = &*cx.get_def_path(adt.did())
&& let sym::libc | sym::core | sym::std = krate
&& name == sym::c_void
{
true
} else {
false
}
}
pub fn for_each_top_level_late_bound_region<B>(
ty: Ty<'_>,
f: impl FnMut(BoundRegion) -> ControlFlow<B>,
) -> ControlFlow<B> {
struct V<F> {
index: u32,
f: F,
}
impl<'tcx, B, F: FnMut(BoundRegion) -> ControlFlow<B>> TypeVisitor<TyCtxt<'tcx>> for V<F> {
type Result = ControlFlow<B>;
fn visit_region(&mut self, r: Region<'tcx>) -> Self::Result {
if let RegionKind::ReBound(idx, bound) = r.kind()
&& idx.as_u32() == self.index
{
(self.f)(bound)
} else {
ControlFlow::Continue(())
}
}
fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(&mut self, t: &Binder<'tcx, T>) -> Self::Result {
self.index += 1;
let res = t.super_visit_with(self);
self.index -= 1;
res
}
}
ty.visit_with(&mut V { index: 0, f })
}
pub struct AdtVariantInfo {
pub ind: usize,
pub size: u64,
/// (ind, size)
pub fields_size: Vec<(usize, u64)>,
}
impl AdtVariantInfo {
/// Returns ADT variants ordered by size
pub fn new<'tcx>(cx: &LateContext<'tcx>, adt: AdtDef<'tcx>, subst: GenericArgsRef<'tcx>) -> Vec<Self> {
let mut variants_size = adt
.variants()
.iter()
.enumerate()
.map(|(i, variant)| {
let mut fields_size = variant
.fields
.iter()
.enumerate()
.map(|(i, f)| (i, approx_ty_size(cx, f.ty(cx.tcx, subst))))
.collect::<Vec<_>>();
fields_size.sort_by(|(_, a_size), (_, b_size)| (a_size.cmp(b_size)));
Self {
ind: i,
size: fields_size.iter().map(|(_, size)| size).sum(),
fields_size,
}
})
.collect::<Vec<_>>();
variants_size.sort_by(|a, b| (b.size.cmp(&a.size)));
variants_size
}
}
/// Gets the struct or enum variant from the given `Res`
pub fn adt_and_variant_of_res<'tcx>(cx: &LateContext<'tcx>, res: Res) -> Option<(AdtDef<'tcx>, &'tcx VariantDef)> {
match res {
Res::Def(DefKind::Struct, id) => {
let adt = cx.tcx.adt_def(id);
Some((adt, adt.non_enum_variant()))
},
Res::Def(DefKind::Variant, id) => {
let adt = cx.tcx.adt_def(cx.tcx.parent(id));
Some((adt, adt.variant_with_id(id)))
},
Res::Def(DefKind::Ctor(CtorOf::Struct, _), id) => {
let adt = cx.tcx.adt_def(cx.tcx.parent(id));
Some((adt, adt.non_enum_variant()))
},
Res::Def(DefKind::Ctor(CtorOf::Variant, _), id) => {
let var_id = cx.tcx.parent(id);
let adt = cx.tcx.adt_def(cx.tcx.parent(var_id));
Some((adt, adt.variant_with_id(var_id)))
},
Res::SelfCtor(id) => {
let adt = cx.tcx.type_of(id).instantiate_identity().ty_adt_def().unwrap();
Some((adt, adt.non_enum_variant()))
2022-08-30 12:44:00 -07:00
},
_ => None,
}
}
/// Comes up with an "at least" guesstimate for the type's size, not taking into
/// account the layout of type parameters.
pub fn approx_ty_size<'tcx>(cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> u64 {
use rustc_middle::ty::layout::LayoutOf;
if !is_normalizable(cx, cx.param_env, ty) {
return 0;
}
match (cx.layout_of(ty).map(|layout| layout.size.bytes()), ty.kind()) {
(Ok(size), _) => size,
(Err(_), ty::Tuple(list)) => list.iter().map(|t| approx_ty_size(cx, t)).sum(),
(Err(_), ty::Array(t, n)) => {
n.try_eval_target_usize(cx.tcx, cx.param_env).unwrap_or_default() * approx_ty_size(cx, *t)
},
(Err(_), ty::Adt(def, subst)) if def.is_struct() => def
.variants()
.iter()
.map(|v| {
v.fields
.iter()
.map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst)))
.sum::<u64>()
})
.sum(),
(Err(_), ty::Adt(def, subst)) if def.is_enum() => def
.variants()
.iter()
.map(|v| {
v.fields
.iter()
.map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst)))
.sum::<u64>()
})
.max()
.unwrap_or_default(),
(Err(_), ty::Adt(def, subst)) if def.is_union() => def
.variants()
.iter()
.map(|v| {
v.fields
.iter()
.map(|field| approx_ty_size(cx, field.ty(cx.tcx, subst)))
.max()
.unwrap_or_default()
})
.max()
.unwrap_or_default(),
(Err(_), _) => 0,
}
}
/// Asserts that the given arguments match the generic parameters of the given item.
#[allow(dead_code)]
fn assert_generic_args_match<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, args: &[GenericArg<'tcx>]) {
let g = tcx.generics_of(did);
let parent = g.parent.map(|did| tcx.generics_of(did));
let count = g.parent_count + g.own_params.len();
let params = parent
.map_or([].as_slice(), |p| p.own_params.as_slice())
.iter()
.chain(&g.own_params)
.map(|x| &x.kind);
assert!(
count == args.len(),
"wrong number of arguments for `{did:?}`: expected `{count}`, found {}\n\
note: the expected arguments are: `[{}]`\n\
the given arguments are: `{args:#?}`",
args.len(),
params.clone().map(GenericParamDefKind::descr).format(", "),
);
if let Some((idx, (param, arg))) =
params
.clone()
.zip(args.iter().map(|&x| x.unpack()))
.enumerate()
.find(|(_, (param, arg))| match (param, arg) {
(GenericParamDefKind::Lifetime, GenericArgKind::Lifetime(_))
| (GenericParamDefKind::Type { .. }, GenericArgKind::Type(_))
| (GenericParamDefKind::Const { .. }, GenericArgKind::Const(_)) => false,
(
GenericParamDefKind::Lifetime
| GenericParamDefKind::Type { .. }
| GenericParamDefKind::Const { .. },
_,
) => true,
})
{
panic!(
"incorrect argument for `{did:?}` at index `{idx}`: expected a {}, found `{arg:?}`\n\
note: the expected arguments are `[{}]`\n\
the given arguments are `{args:#?}`",
param.descr(),
params.clone().map(GenericParamDefKind::descr).format(", "),
);
}
}
/// Returns whether `ty` is never-like; i.e., `!` (never) or an enum with zero variants.
pub fn is_never_like(ty: Ty<'_>) -> bool {
ty.is_never() || (ty.is_enum() && ty.ty_adt_def().is_some_and(|def| def.variants().is_empty()))
}
/// Makes the projection type for the named associated type in the given impl or trait impl.
///
/// This function is for associated types which are "known" to exist, and as such, will only return
/// `None` when debug assertions are disabled in order to prevent ICE's. With debug assertions
/// enabled this will check that the named associated type exists, the correct number of
/// arguments are given, and that the correct kinds of arguments are given (lifetime,
/// constant or type). This will not check if type normalization would succeed.
pub fn make_projection<'tcx>(
tcx: TyCtxt<'tcx>,
container_id: DefId,
assoc_ty: Symbol,
args: impl IntoIterator<Item = impl Into<GenericArg<'tcx>>>,
) -> Option<AliasTy<'tcx>> {
fn helper<'tcx>(
tcx: TyCtxt<'tcx>,
container_id: DefId,
assoc_ty: Symbol,
args: GenericArgsRef<'tcx>,
) -> Option<AliasTy<'tcx>> {
let Some(assoc_item) = tcx.associated_items(container_id).find_by_name_and_kind(
tcx,
Ident::with_dummy_span(assoc_ty),
AssocKind::Type,
container_id,
) else {
debug_assert!(false, "type `{assoc_ty}` not found in `{container_id:?}`");
return None;
};
#[cfg(debug_assertions)]
assert_generic_args_match(tcx, assoc_item.def_id, args);
Some(AliasTy::new(tcx, assoc_item.def_id, args))
}
helper(
tcx,
container_id,
assoc_ty,
tcx.mk_args_from_iter(args.into_iter().map(Into::into)),
)
}
/// Normalizes the named associated type in the given impl or trait impl.
///
/// This function is for associated types which are "known" to be valid with the given
/// arguments, and as such, will only return `None` when debug assertions are disabled in order
/// to prevent ICE's. With debug assertions enabled this will check that type normalization
/// succeeds as well as everything checked by `make_projection`.
pub fn make_normalized_projection<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
container_id: DefId,
assoc_ty: Symbol,
args: impl IntoIterator<Item = impl Into<GenericArg<'tcx>>>,
) -> Option<Ty<'tcx>> {
fn helper<'tcx>(tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: AliasTy<'tcx>) -> Option<Ty<'tcx>> {
#[cfg(debug_assertions)]
if let Some((i, arg)) = ty
.args
.iter()
.enumerate()
.find(|(_, arg)| arg.has_escaping_bound_vars())
{
debug_assert!(
false,
"args contain late-bound region at index `{i}` which can't be normalized.\n\
use `TyCtxt::instantiate_bound_regions_with_erased`\n\
note: arg is `{arg:#?}`",
);
return None;
}
match tcx.try_normalize_erasing_regions(param_env, Ty::new_projection(tcx, ty.def_id, ty.args)) {
Ok(ty) => Some(ty),
Err(e) => {
debug_assert!(false, "failed to normalize type `{ty}`: {e:#?}");
None
},
}
}
helper(tcx, param_env, make_projection(tcx, container_id, assoc_ty, args)?)
}
/// Helper to check if given type has inner mutability such as [`std::cell::Cell`] or
/// [`std::cell::RefCell`].
#[derive(Default, Debug)]
pub struct InteriorMut<'tcx> {
ignored_def_ids: FxHashSet<DefId>,
ignore_pointers: bool,
tys: FxHashMap<Ty<'tcx>, Option<bool>>,
}
impl<'tcx> InteriorMut<'tcx> {
pub fn new(cx: &LateContext<'tcx>, ignore_interior_mutability: &[String]) -> Self {
let ignored_def_ids = ignore_interior_mutability
.iter()
.flat_map(|ignored_ty| {
let path: Vec<&str> = ignored_ty.split("::").collect();
def_path_def_ids(cx, path.as_slice())
})
.collect();
Self {
ignored_def_ids,
..Self::default()
}
}
pub fn without_pointers(cx: &LateContext<'tcx>, ignore_interior_mutability: &[String]) -> Self {
Self {
ignore_pointers: true,
..Self::new(cx, ignore_interior_mutability)
}
}
/// Check if given type has inner mutability such as [`std::cell::Cell`] or
/// [`std::cell::RefCell`] etc.
pub fn is_interior_mut_ty(&mut self, cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match self.tys.entry(ty) {
Entry::Occupied(o) => return *o.get() == Some(true),
// Temporarily insert a `None` to break cycles
Entry::Vacant(v) => v.insert(None),
};
let interior_mut = match *ty.kind() {
ty::RawPtr(inner_ty, _) if !self.ignore_pointers => self.is_interior_mut_ty(cx, inner_ty),
ty::Ref(_, inner_ty, _) | ty::Slice(inner_ty) => self.is_interior_mut_ty(cx, inner_ty),
ty::Array(inner_ty, size) => {
size.try_eval_target_usize(cx.tcx, cx.param_env)
.map_or(true, |u| u != 0)
&& self.is_interior_mut_ty(cx, inner_ty)
},
ty::Tuple(fields) => fields.iter().any(|ty| self.is_interior_mut_ty(cx, ty)),
ty::Adt(def, _) if def.is_unsafe_cell() => true,
ty::Adt(def, args) => {
let is_std_collection = matches!(
cx.tcx.get_diagnostic_name(def.did()),
Some(
sym::LinkedList
| sym::Vec
| sym::VecDeque
| sym::BTreeMap
| sym::BTreeSet
| sym::HashMap
| sym::HashSet
| sym::Arc
| sym::Rc
)
);
if is_std_collection || def.is_box() {
// Include the types from std collections that are behind pointers internally
args.types().any(|ty| self.is_interior_mut_ty(cx, ty))
} else if self.ignored_def_ids.contains(&def.did()) || def.is_phantom_data() {
false
} else {
def.all_fields()
.any(|f| self.is_interior_mut_ty(cx, f.ty(cx.tcx, args)))
}
},
_ => false,
};
self.tys.insert(ty, Some(interior_mut));
interior_mut
}
}
pub fn make_normalized_projection_with_regions<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
container_id: DefId,
assoc_ty: Symbol,
args: impl IntoIterator<Item = impl Into<GenericArg<'tcx>>>,
) -> Option<Ty<'tcx>> {
fn helper<'tcx>(tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: AliasTy<'tcx>) -> Option<Ty<'tcx>> {
#[cfg(debug_assertions)]
if let Some((i, arg)) = ty
.args
.iter()
.enumerate()
.find(|(_, arg)| arg.has_escaping_bound_vars())
{
debug_assert!(
false,
"args contain late-bound region at index `{i}` which can't be normalized.\n\
use `TyCtxt::instantiate_bound_regions_with_erased`\n\
note: arg is `{arg:#?}`",
);
return None;
}
let cause = ObligationCause::dummy();
match tcx
.infer_ctxt()
.build()
.at(&cause, param_env)
.query_normalize(Ty::new_projection(tcx, ty.def_id, ty.args))
{
Ok(ty) => Some(ty.value),
Err(e) => {
debug_assert!(false, "failed to normalize type `{ty}`: {e:#?}");
None
},
}
}
helper(tcx, param_env, make_projection(tcx, container_id, assoc_ty, args)?)
}
pub fn normalize_with_regions<'tcx>(tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
let cause = ObligationCause::dummy();
match tcx.infer_ctxt().build().at(&cause, param_env).query_normalize(ty) {
Ok(ty) => ty.value,
Err(_) => ty,
}
}
/// Checks if the type is `core::mem::ManuallyDrop<_>`
pub fn is_manually_drop(ty: Ty<'_>) -> bool {
ty.ty_adt_def().map_or(false, AdtDef::is_manually_drop)
}