rust/src/libregex/compile.rs

274 lines
9.2 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Enable this to squash warnings due to exporting pieces of the representation
// for use with the regex! macro. See lib.rs for explanation.
#![allow(visible_private_types)]
use std::cmp;
use parse;
use parse::{
Flags, FLAG_EMPTY,
Nothing, Literal, Dot, Class, Begin, End, WordBoundary, Capture, Cat, Alt,
Rep,
ZeroOne, ZeroMore, OneMore,
};
type InstIdx = uint;
#[deriving(Show, Clone)]
pub enum Inst {
// When a Match instruction is executed, the current thread is successful.
Match,
// The OneChar instruction matches a literal character.
// The flags indicate whether to do a case insensitive match.
OneChar(char, Flags),
// The CharClass instruction tries to match one input character against
// the range of characters given.
// The flags indicate whether to do a case insentivie match and whether
// the character class is negated or not.
CharClass(Vec<(char, char)>, Flags),
// Matches any character except new lines.
// The flags indicate whether to include the '\n' character.
Any(Flags),
// Matches the beginning of the string, consumes no characters.
// The flags indicate whether it matches if the preceding character
// is a new line.
EmptyBegin(Flags),
// Matches the end of the string, consumes no characters.
// The flags indicate whether it matches if the proceding character
// is a new line.
EmptyEnd(Flags),
// Matches a word boundary (\w on one side and \W \A or \z on the other),
// and consumes no character.
// The flags indicate whether this matches a word boundary or something
// that isn't a word boundary.
EmptyWordBoundary(Flags),
// Saves the current position in the input string to the Nth save slot.
Save(uint),
// Jumps to the instruction at the index given.
Jump(InstIdx),
// Jumps to the instruction at the first index given. If that leads to
// a failing state, then the instruction at the second index given is
// tried.
Split(InstIdx, InstIdx),
}
/// Program represents a compiled regular expression. Once an expression is
/// compiled, its representation is immutable and will never change.
///
/// All of the data in a compiled expression is wrapped in "MaybeStatic" or
/// "MaybeOwned" types so that a `Program` can be represented as static data.
/// (This makes it convenient and efficient for use with the `regex!` macro.)
#[deriving(Clone)]
pub struct Program {
/// A sequence of instructions.
pub insts: Vec<Inst>,
/// If the regular expression requires a literal prefix in order to have a
/// match, that prefix is stored here. (It's used in the VM to implement
/// an optimization.)
pub prefix: String,
}
impl Program {
/// Compiles a Regex given its AST.
pub fn new(ast: parse::Ast) -> (Program, Vec<Option<String>>) {
let mut c = Compiler {
insts: Vec::with_capacity(100),
names: Vec::with_capacity(10),
};
c.insts.push(Save(0));
c.compile(ast);
c.insts.push(Save(1));
c.insts.push(Match);
// Try to discover a literal string prefix.
// This is a bit hacky since we have to skip over the initial
// 'Save' instruction.
let mut pre = String::with_capacity(5);
for inst in c.insts.slice_from(1).iter() {
match *inst {
OneChar(c, FLAG_EMPTY) => pre.push_char(c),
_ => break
}
}
let Compiler { insts, names } = c;
let prog = Program {
insts: insts,
prefix: pre,
};
(prog, names)
}
/// Returns the total number of capture groups in the regular expression.
/// This includes the zeroth capture.
pub fn num_captures(&self) -> uint {
let mut n = 0;
for inst in self.insts.iter() {
match *inst {
Save(c) => n = cmp::max(n, c+1),
_ => {}
}
}
// There's exactly 2 Save slots for every capture.
n / 2
}
}
struct Compiler<'r> {
insts: Vec<Inst>,
names: Vec<Option<String>>,
}
// The compiler implemented here is extremely simple. Most of the complexity
// in this crate is in the parser or the VM.
// The only tricky thing here is patching jump/split instructions to point to
// the right instruction.
impl<'r> Compiler<'r> {
fn compile(&mut self, ast: parse::Ast) {
match ast {
Nothing => {},
Literal(c, flags) => self.push(OneChar(c, flags)),
Dot(nl) => self.push(Any(nl)),
Class(ranges, flags) =>
self.push(CharClass(ranges, flags)),
Begin(flags) => self.push(EmptyBegin(flags)),
End(flags) => self.push(EmptyEnd(flags)),
WordBoundary(flags) => self.push(EmptyWordBoundary(flags)),
Capture(cap, name, x) => {
let len = self.names.len();
if cap >= len {
self.names.grow(10 + cap - len, &None)
}
*self.names.get_mut(cap) = name;
self.push(Save(2 * cap));
self.compile(*x);
self.push(Save(2 * cap + 1));
}
Cat(xs) => {
for x in xs.move_iter() {
self.compile(x)
}
}
Alt(x, y) => {
let split = self.empty_split(); // push: split 0, 0
let j1 = self.insts.len();
self.compile(*x); // push: insts for x
let jmp = self.empty_jump(); // push: jmp 0
let j2 = self.insts.len();
self.compile(*y); // push: insts for y
let j3 = self.insts.len();
self.set_split(split, j1, j2); // split 0, 0 -> split j1, j2
self.set_jump(jmp, j3); // jmp 0 -> jmp j3
}
Rep(x, ZeroOne, g) => {
let split = self.empty_split();
let j1 = self.insts.len();
self.compile(*x);
let j2 = self.insts.len();
if g.is_greedy() {
self.set_split(split, j1, j2);
} else {
self.set_split(split, j2, j1);
}
}
Rep(x, ZeroMore, g) => {
let j1 = self.insts.len();
let split = self.empty_split();
let j2 = self.insts.len();
self.compile(*x);
let jmp = self.empty_jump();
let j3 = self.insts.len();
self.set_jump(jmp, j1);
if g.is_greedy() {
self.set_split(split, j2, j3);
} else {
self.set_split(split, j3, j2);
}
}
Rep(x, OneMore, g) => {
let j1 = self.insts.len();
self.compile(*x);
let split = self.empty_split();
let j2 = self.insts.len();
if g.is_greedy() {
self.set_split(split, j1, j2);
} else {
self.set_split(split, j2, j1);
}
}
}
}
/// Appends the given instruction to the program.
#[inline]
fn push(&mut self, x: Inst) {
self.insts.push(x)
}
/// Appends an *empty* `Split` instruction to the program and returns
/// the index of that instruction. (The index can then be used to "patch"
/// the actual locations of the split in later.)
#[inline]
fn empty_split(&mut self) -> InstIdx {
self.insts.push(Split(0, 0));
self.insts.len() - 1
}
/// Sets the left and right locations of a `Split` instruction at index
/// `i` to `pc1` and `pc2`, respectively.
/// If the instruction at index `i` isn't a `Split` instruction, then
/// `fail!` is called.
#[inline]
fn set_split(&mut self, i: InstIdx, pc1: InstIdx, pc2: InstIdx) {
let split = self.insts.get_mut(i);
match *split {
Split(_, _) => *split = Split(pc1, pc2),
_ => fail!("BUG: Invalid split index."),
}
}
/// Appends an *empty* `Jump` instruction to the program and returns the
/// index of that instruction.
#[inline]
fn empty_jump(&mut self) -> InstIdx {
self.insts.push(Jump(0));
self.insts.len() - 1
}
/// Sets the location of a `Jump` instruction at index `i` to `pc`.
/// If the instruction at index `i` isn't a `Jump` instruction, then
/// `fail!` is called.
#[inline]
fn set_jump(&mut self, i: InstIdx, pc: InstIdx) {
let jmp = self.insts.get_mut(i);
match *jmp {
Jump(_) => *jmp = Jump(pc),
_ => fail!("BUG: Invalid jump index."),
}
}
}