rust/src/librustc_trans/save/dump_csv.rs

1473 lines
60 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Output a CSV file containing the output from rustc's analysis. The data is
//! primarily designed to be used as input to the DXR tool, specifically its
//! Rust plugin. It could also be used by IDEs or other code browsing, search, or
//! cross-referencing tools.
//!
//! Dumping the analysis is implemented by walking the AST and getting a bunch of
//! info out from all over the place. We use Def IDs to identify objects. The
//! tricky part is getting syntactic (span, source text) and semantic (reference
//! Def IDs) information for parts of expressions which the compiler has discarded.
//! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole
//! path and a reference to `baz`, but we want spans and references for all three
//! idents.
//!
//! SpanUtils is used to manipulate spans. In particular, to extract sub-spans
//! from spans (e.g., the span for `bar` from the above example path).
//! Recorder is used for recording the output in csv format. FmtStrs separates
//! the format of the output away from extracting it from the compiler.
//! DumpCsvVisitor walks the AST and processes it.
2015-05-05 05:03:20 -05:00
use super::{escape, generated_code, recorder, SaveContext, PathCollector};
use session::Session;
use middle::def;
use middle::ty::{self, Ty};
2015-06-09 18:40:45 -05:00
use rustc::ast_map::NodeItem;
use std::cell::Cell;
use std::fs::File;
use std::path::Path;
use syntax::ast_util;
use syntax::ast::{self, NodeId, DefId};
use syntax::codemap::*;
use syntax::parse::token::{self, get_ident, keywords};
use syntax::owned_slice::OwnedSlice;
use syntax::visit::{self, Visitor};
use syntax::print::pprust::{path_to_string, ty_to_string};
use syntax::ptr::P;
use super::span_utils::SpanUtils;
use super::recorder::{Recorder, FmtStrs};
use util::ppaux;
pub struct DumpCsvVisitor<'l, 'tcx: 'l> {
2015-05-05 02:27:44 -05:00
save_ctxt: SaveContext<'l, 'tcx>,
sess: &'l Session,
analysis: &'l ty::CrateAnalysis<'tcx>,
span: SpanUtils<'l>,
fmt: FmtStrs<'l>,
cur_scope: NodeId
}
impl <'l, 'tcx> DumpCsvVisitor<'l, 'tcx> {
pub fn new(sess: &'l Session,
analysis: &'l ty::CrateAnalysis<'tcx>,
output_file: Box<File>) -> DumpCsvVisitor<'l, 'tcx> {
DumpCsvVisitor {
sess: sess,
2015-05-05 02:27:44 -05:00
save_ctxt: SaveContext::new(sess, analysis, SpanUtils {
sess: sess,
err_count: Cell::new(0)
}),
analysis: analysis,
span: SpanUtils {
sess: sess,
err_count: Cell::new(0)
},
fmt: FmtStrs::new(box Recorder {
out: output_file,
dump_spans: false,
},
SpanUtils {
sess: sess,
err_count: Cell::new(0)
}),
cur_scope: 0
}
}
fn nest<F>(&mut self, scope_id: NodeId, f: F) where
F: FnOnce(&mut DumpCsvVisitor<'l, 'tcx>),
{
let parent_scope = self.cur_scope;
self.cur_scope = scope_id;
f(self);
self.cur_scope = parent_scope;
}
pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) {
// The current crate.
self.fmt.crate_str(krate.span, name);
// Dump info about all the external crates referenced from this crate.
for c in &self.save_ctxt.get_external_crates() {
self.fmt.external_crate_str(krate.span, &c.name, c.number);
}
self.fmt.recorder.record("end_external_crates\n");
}
// Return all non-empty prefixes of a path.
// For each prefix, we return the span for the last segment in the prefix and
// a str representation of the entire prefix.
fn process_path_prefixes(&self, path: &ast::Path) -> Vec<(Span, String)> {
let spans = self.span.spans_for_path_segments(path);
// Paths to enums seem to not match their spans - the span includes all the
// variants too. But they seem to always be at the end, so I hope we can cope with
// always using the first ones. So, only error out if we don't have enough spans.
// What could go wrong...?
if spans.len() < path.segments.len() {
error!("Mis-calculated spans for path '{}'. \
Found {} spans, expected {}. Found spans:",
path_to_string(path), spans.len(), path.segments.len());
for s in &spans {
let loc = self.sess.codemap().lookup_char_pos(s.lo);
error!(" '{}' in {}, line {}",
self.span.snippet(*s), loc.file.name, loc.line);
}
return vec!();
}
let mut result: Vec<(Span, String)> = vec!();
let mut segs = vec!();
for (i, (seg, span)) in path.segments.iter().zip(&spans).enumerate() {
segs.push(seg.clone());
let sub_path = ast::Path{span: *span, // span for the last segment
global: path.global,
segments: segs};
let qualname = if i == 0 && path.global {
format!("::{}", path_to_string(&sub_path))
} else {
path_to_string(&sub_path)
};
result.push((*span, qualname));
segs = sub_path.segments;
}
result
}
// The global arg allows us to override the global-ness of the path (which
// actually means 'does the path start with `::`', rather than 'is the path
// semantically global). We use the override for `use` imports (etc.) where
// the syntax is non-global, but the semantics are global.
fn write_sub_paths(&mut self, path: &ast::Path, global: bool) {
let sub_paths = self.process_path_prefixes(path);
for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() {
let qualname = if i == 0 && global && !path.global {
format!("::{}", qualname)
} else {
qualname.clone()
};
self.fmt.sub_mod_ref_str(path.span,
*span,
&qualname,
self.cur_scope);
}
}
// As write_sub_paths, but does not process the last ident in the path (assuming it
// will be processed elsewhere). See note on write_sub_paths about global.
fn write_sub_paths_truncated(&mut self, path: &ast::Path, global: bool) {
let sub_paths = self.process_path_prefixes(path);
let len = sub_paths.len();
if len <= 1 {
return;
}
let sub_paths = &sub_paths[..len-1];
for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() {
let qualname = if i == 0 && global && !path.global {
format!("::{}", qualname)
} else {
qualname.clone()
};
self.fmt.sub_mod_ref_str(path.span,
*span,
&qualname,
self.cur_scope);
}
}
// As write_sub_paths, but expects a path of the form module_path::trait::method
// Where trait could actually be a struct too.
fn write_sub_path_trait_truncated(&mut self, path: &ast::Path) {
let sub_paths = self.process_path_prefixes(path);
let len = sub_paths.len();
if len <= 1 {
return;
}
let sub_paths = &sub_paths[.. (len-1)];
// write the trait part of the sub-path
let (ref span, ref qualname) = sub_paths[len-2];
self.fmt.sub_type_ref_str(path.span,
*span,
&qualname);
// write the other sub-paths
if len <= 2 {
return;
}
let sub_paths = &sub_paths[..len-2];
for &(ref span, ref qualname) in sub_paths {
self.fmt.sub_mod_ref_str(path.span,
*span,
&qualname,
self.cur_scope);
}
}
// looks up anything, not just a type
fn lookup_type_ref(&self, ref_id: NodeId) -> Option<DefId> {
if !self.analysis.ty_cx.def_map.borrow().contains_key(&ref_id) {
self.sess.bug(&format!("def_map has no key for {} in lookup_type_ref",
ref_id));
}
let def = self.analysis.ty_cx.def_map.borrow().get(&ref_id).unwrap().full_def();
match def {
def::DefPrimTy(_) => None,
_ => Some(def.def_id()),
}
}
fn lookup_def_kind(&self, ref_id: NodeId, span: Span) -> Option<recorder::Row> {
let def_map = self.analysis.ty_cx.def_map.borrow();
if !def_map.contains_key(&ref_id) {
self.sess.span_bug(span, &format!("def_map has no key for {} in lookup_def_kind",
ref_id));
}
let def = def_map.get(&ref_id).unwrap().full_def();
match def {
def::DefMod(_) |
def::DefForeignMod(_) => Some(recorder::ModRef),
def::DefStruct(_) => Some(recorder::StructRef),
def::DefTy(..) |
def::DefAssociatedTy(..) |
def::DefTrait(_) => Some(recorder::TypeRef),
def::DefStatic(_, _) |
def::DefConst(_) |
def::DefAssociatedConst(..) |
def::DefLocal(_) |
def::DefVariant(_, _, _) |
def::DefUpvar(..) => Some(recorder::VarRef),
def::DefFn(..) => Some(recorder::FnRef),
def::DefSelfTy(..) |
def::DefRegion(_) |
def::DefLabel(_) |
def::DefTyParam(..) |
def::DefUse(_) |
def::DefMethod(..) |
def::DefPrimTy(_) => {
self.sess.span_bug(span, &format!("lookup_def_kind for unexpected item: {:?}",
def));
},
}
}
fn process_formals(&mut self, formals: &Vec<ast::Arg>, qualname: &str) {
for arg in formals {
2015-05-05 05:03:20 -05:00
self.visit_pat(&arg.pat);
let mut collector = PathCollector::new();
collector.visit_pat(&arg.pat);
let span_utils = self.span.clone();
2015-05-05 05:03:20 -05:00
for &(id, ref p, _, _) in &collector.collected_paths {
let typ =
ppaux::ty_to_string(
&self.analysis.ty_cx,
*self.analysis.ty_cx.node_types().get(&id).unwrap());
// get the span only for the name of the variable (I hope the path is only ever a
// variable name, but who knows?)
self.fmt.formal_str(p.span,
span_utils.span_for_last_ident(p.span),
id,
qualname,
&path_to_string(p),
&typ);
}
}
}
fn process_method(&mut self, sig: &ast::MethodSig,
body: Option<&ast::Block>,
id: ast::NodeId, name: ast::Name,
span: Span) {
if generated_code(span) {
return;
}
debug!("process_method: {}:{}", id, token::get_name(name));
let mut scope_id;
// The qualname for a method is the trait name or name of the struct in an impl in
// which the method is declared in, followed by the method's name.
let qualname = match ty::impl_of_method(&self.analysis.ty_cx,
ast_util::local_def(id)) {
Some(impl_id) => match self.analysis.ty_cx.map.get(impl_id.node) {
NodeItem(item) => {
scope_id = item.id;
match item.node {
ast::ItemImpl(_, _, _, _, ref ty, _) => {
let mut result = String::from("<");
result.push_str(&ty_to_string(&**ty));
match ty::trait_of_item(&self.analysis.ty_cx,
ast_util::local_def(id)) {
Some(def_id) => {
result.push_str(" as ");
result.push_str(
&ty::item_path_str(&self.analysis.ty_cx, def_id));
},
None => {}
}
result.push_str(">");
result
}
_ => {
self.sess.span_bug(span,
&format!("Container {} for method {} not an impl?",
impl_id.node, id));
},
}
},
_ => {
self.sess.span_bug(span,
&format!("Container {} for method {} is not a node item {:?}",
impl_id.node, id, self.analysis.ty_cx.map.get(impl_id.node)));
},
},
None => match ty::trait_of_item(&self.analysis.ty_cx,
ast_util::local_def(id)) {
Some(def_id) => {
scope_id = def_id.node;
match self.analysis.ty_cx.map.get(def_id.node) {
NodeItem(_) => {
format!("::{}", ty::item_path_str(&self.analysis.ty_cx, def_id))
}
_ => {
self.sess.span_bug(span,
&format!("Could not find container {} for method {}",
def_id.node, id));
}
}
},
None => {
self.sess.span_bug(span,
&format!("Could not find container for method {}", id));
},
},
};
let qualname = &format!("{}::{}", qualname, &token::get_name(name));
// record the decl for this def (if it has one)
let decl_id = ty::trait_item_of_item(&self.analysis.ty_cx,
ast_util::local_def(id))
.and_then(|new_id| {
let def_id = new_id.def_id();
if def_id.node != 0 && def_id != ast_util::local_def(id) {
Some(def_id)
} else {
None
}
});
let sub_span = self.span.sub_span_after_keyword(span, keywords::Fn);
if body.is_some() {
self.fmt.method_str(span,
sub_span,
id,
qualname,
decl_id,
scope_id);
self.process_formals(&sig.decl.inputs, qualname);
} else {
self.fmt.method_decl_str(span,
sub_span,
id,
qualname,
scope_id);
}
// walk arg and return types
for arg in &sig.decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::Return(ref ret_ty) = sig.decl.output {
self.visit_ty(ret_ty);
}
// walk the fn body
if let Some(body) = body {
self.nest(id, |v| v.visit_block(body));
}
self.process_generic_params(&sig.generics,
span,
qualname,
id);
}
fn process_trait_ref(&mut self,
trait_ref: &ast::TraitRef) {
match self.lookup_type_ref(trait_ref.ref_id) {
Some(id) => {
let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span);
self.fmt.ref_str(recorder::TypeRef,
trait_ref.path.span,
sub_span,
id,
self.cur_scope);
visit::walk_path(self, &trait_ref.path);
},
None => ()
}
}
fn process_struct_field_def(&mut self,
field: &ast::StructField,
qualname: &str,
scope_id: NodeId) {
match field.node.kind {
ast::NamedField(ident, _) => {
let name = get_ident(ident);
let qualname = format!("{}::{}", qualname, name);
let typ =
ppaux::ty_to_string(
&self.analysis.ty_cx,
*self.analysis.ty_cx.node_types().get(&field.node.id).unwrap());
match self.span.sub_span_before_token(field.span, token::Colon) {
Some(sub_span) => self.fmt.field_str(field.span,
Some(sub_span),
field.node.id,
&name,
&qualname,
&typ,
scope_id),
None => self.sess.span_bug(field.span,
&format!("Could not find sub-span for field {}",
qualname)),
}
},
_ => (),
}
}
// Dump generic params bindings, then visit_generics
fn process_generic_params(&mut self,
generics:&ast::Generics,
full_span: Span,
prefix: &str,
id: NodeId) {
// We can't only use visit_generics since we don't have spans for param
// bindings, so we reparse the full_span to get those sub spans.
// However full span is the entire enum/fn/struct block, so we only want
// the first few to match the number of generics we're looking for.
let param_sub_spans = self.span.spans_for_ty_params(full_span,
(generics.ty_params.len() as isize));
for (param, param_ss) in generics.ty_params.iter().zip(param_sub_spans) {
// Append $id to name to make sure each one is unique
let name = format!("{}::{}${}",
prefix,
escape(self.span.snippet(param_ss)),
id);
self.fmt.typedef_str(full_span,
Some(param_ss),
param.id,
&name,
"");
}
self.visit_generics(generics);
}
fn process_fn(&mut self,
item: &ast::Item,
decl: &ast::FnDecl,
ty_params: &ast::Generics,
body: &ast::Block) {
let fn_data = self.save_ctxt.get_item_data(item);
if let super::Data::FunctionData(fn_data) = fn_data {
self.fmt.fn_str(item.span,
Some(fn_data.span),
fn_data.id,
&fn_data.qualname,
fn_data.scope);
self.process_formals(&decl.inputs, &fn_data.qualname);
self.process_generic_params(ty_params, item.span, &fn_data.qualname, item.id);
} else {
self.sess.span_bug(item.span, "expected FunctionData");
}
for arg in &decl.inputs {
self.visit_ty(&arg.ty);
}
if let ast::Return(ref ret_ty) = decl.output {
self.visit_ty(&ret_ty);
}
self.nest(item.id, |v| v.visit_block(&body));
}
fn process_static_or_const_item(&mut self,
item: &ast::Item,
typ: &ast::Ty,
expr: &ast::Expr)
{
let var_data = self.save_ctxt.get_item_data(item);
if let super::Data::VariableData(var_data) = var_data {
self.fmt.static_str(item.span,
Some(var_data.span),
var_data.id,
&var_data.name,
&var_data.qualname,
&var_data.value,
&var_data.type_value,
var_data.scope);
} else {
self.sess.span_bug(item.span, "expected VariableData");
}
self.visit_ty(&typ);
self.visit_expr(expr);
}
fn process_const(&mut self,
id: ast::NodeId,
ident: &ast::Ident,
span: Span,
typ: &ast::Ty,
expr: &ast::Expr)
{
let qualname = format!("::{}", self.analysis.ty_cx.map.path_to_string(id));
let sub_span = self.span.sub_span_after_keyword(span,
keywords::Const);
self.fmt.static_str(span,
sub_span,
id,
&get_ident((*ident).clone()),
&qualname,
&self.span.snippet(expr.span),
&ty_to_string(&*typ),
self.cur_scope);
// walk type and init value
self.visit_ty(typ);
self.visit_expr(expr);
}
fn process_struct(&mut self,
item: &ast::Item,
def: &ast::StructDef,
ty_params: &ast::Generics) {
let qualname = format!("::{}", self.analysis.ty_cx.map.path_to_string(item.id));
let ctor_id = match def.ctor_id {
Some(node_id) => node_id,
None => -1,
};
let val = self.span.snippet(item.span);
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Struct);
self.fmt.struct_str(item.span,
sub_span,
item.id,
ctor_id,
&qualname,
self.cur_scope,
&val);
// fields
for field in &def.fields {
self.process_struct_field_def(field, &qualname, item.id);
self.visit_ty(&*field.node.ty);
}
self.process_generic_params(ty_params, item.span, &qualname, item.id);
}
fn process_enum(&mut self,
item: &ast::Item,
enum_definition: &ast::EnumDef,
ty_params: &ast::Generics) {
2015-06-02 14:21:20 -05:00
let enum_data = self.save_ctxt.get_item_data(item);
if let super::Data::EnumData(enum_data) = enum_data {
self.fmt.enum_str(item.span,
Some(enum_data.span),
enum_data.id,
&enum_data.qualname,
self.cur_scope,
&enum_data.value);
for variant in &enum_definition.variants {
let name = &get_ident(variant.node.name);
let mut qualname = enum_data.qualname.clone();
qualname.push_str("::");
qualname.push_str(name);
let val = self.span.snippet(variant.span);
match variant.node.kind {
ast::TupleVariantKind(ref args) => {
// first ident in span is the variant's name
self.fmt.tuple_variant_str(variant.span,
self.span.span_for_first_ident(variant.span),
variant.node.id,
name,
&qualname,
&enum_data.qualname,
&val,
item.id);
for arg in args {
self.visit_ty(&*arg.ty);
}
}
2015-06-02 14:21:20 -05:00
ast::StructVariantKind(ref struct_def) => {
let ctor_id = match struct_def.ctor_id {
Some(node_id) => node_id,
None => -1,
};
self.fmt.struct_variant_str(variant.span,
self.span.span_for_first_ident(variant.span),
variant.node.id,
ctor_id,
&qualname,
&enum_data.qualname,
&val,
item.id);
for field in &struct_def.fields {
self.process_struct_field_def(field, &qualname, variant.node.id);
self.visit_ty(&*field.node.ty);
}
}
}
}
2015-06-02 14:21:20 -05:00
self.process_generic_params(ty_params, item.span, &enum_data.qualname, item.id);
} else {
self.sess.span_bug(item.span, "expected EnumData");
}
}
fn process_impl(&mut self,
item: &ast::Item,
type_parameters: &ast::Generics,
trait_ref: &Option<ast::TraitRef>,
typ: &ast::Ty,
impl_items: &[P<ast::ImplItem>]) {
let trait_id = trait_ref.as_ref().and_then(|tr| self.lookup_type_ref(tr.ref_id));
match typ.node {
// Common case impl for a struct or something basic.
ast::TyPath(None, ref path) => {
let sub_span = self.span.sub_span_for_type_name(path.span);
let self_id = self.lookup_type_ref(typ.id).map(|id| {
self.fmt.ref_str(recorder::TypeRef,
path.span,
sub_span,
id,
self.cur_scope);
id
});
self.fmt.impl_str(path.span,
sub_span,
item.id,
self_id,
trait_id,
self.cur_scope);
},
_ => {
// Less useful case, impl for a compound type.
self.visit_ty(&*typ);
let sub_span = self.span.sub_span_for_type_name(typ.span);
self.fmt.impl_str(typ.span,
sub_span,
item.id,
None,
trait_id,
self.cur_scope);
}
}
match *trait_ref {
Some(ref trait_ref) => self.process_trait_ref(trait_ref),
None => (),
}
self.process_generic_params(type_parameters, item.span, "", item.id);
for impl_item in impl_items {
self.visit_impl_item(impl_item);
}
}
fn process_trait(&mut self,
item: &ast::Item,
generics: &ast::Generics,
trait_refs: &OwnedSlice<ast::TyParamBound>,
methods: &[P<ast::TraitItem>]) {
let qualname = format!("::{}", self.analysis.ty_cx.map.path_to_string(item.id));
let val = self.span.snippet(item.span);
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Trait);
self.fmt.trait_str(item.span,
sub_span,
item.id,
&qualname,
self.cur_scope,
&val);
// super-traits
for super_bound in trait_refs.iter() {
let trait_ref = match *super_bound {
ast::TraitTyParamBound(ref trait_ref, _) => {
trait_ref
}
ast::RegionTyParamBound(..) => {
continue;
}
};
let trait_ref = &trait_ref.trait_ref;
match self.lookup_type_ref(trait_ref.ref_id) {
Some(id) => {
let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span);
self.fmt.ref_str(recorder::TypeRef,
trait_ref.path.span,
sub_span,
id,
self.cur_scope);
self.fmt.inherit_str(trait_ref.path.span,
sub_span,
id,
item.id);
},
None => ()
}
}
// walk generics and methods
self.process_generic_params(generics, item.span, &qualname, item.id);
for method in methods {
self.visit_trait_item(method)
}
}
fn process_mod(&mut self,
item: &ast::Item) { // The module in question, represented as an item.
let mod_data = self.save_ctxt.get_item_data(item);
if let super::Data::ModData(mod_data) = mod_data {
self.fmt.mod_str(item.span,
Some(mod_data.span),
mod_data.id,
&mod_data.qualname,
mod_data.scope,
&mod_data.filename);
} else {
self.sess.span_bug(item.span, "expected ModData");
}
}
fn process_path(&mut self,
id: NodeId,
span: Span,
path: &ast::Path,
ref_kind: Option<recorder::Row>) {
if generated_code(span) {
return
}
let def_map = self.analysis.ty_cx.def_map.borrow();
if !def_map.contains_key(&id) {
self.sess.span_bug(span,
&format!("def_map has no key for {} in visit_expr", id));
}
let def = def_map.get(&id).unwrap().full_def();
let sub_span = self.span.span_for_last_ident(span);
match def {
def::DefUpvar(..) |
def::DefLocal(..) |
def::DefStatic(..) |
def::DefConst(..) |
def::DefAssociatedConst(..) |
def::DefVariant(..) => self.fmt.ref_str(ref_kind.unwrap_or(recorder::VarRef),
span,
sub_span,
def.def_id(),
self.cur_scope),
def::DefStruct(def_id) => self.fmt.ref_str(recorder::StructRef,
span,
sub_span,
def_id,
self.cur_scope),
def::DefTy(def_id, _) => self.fmt.ref_str(recorder::TypeRef,
span,
sub_span,
def_id,
self.cur_scope),
def::DefMethod(declid, provenence) => {
let sub_span = self.span.sub_span_for_meth_name(span);
let defid = if declid.krate == ast::LOCAL_CRATE {
let ti = ty::impl_or_trait_item(&self.analysis.ty_cx,
declid);
match provenence {
def::FromTrait(def_id) => {
Some(ty::trait_items(&self.analysis.ty_cx,
def_id)
.iter()
.find(|mr| {
mr.name() == ti.name()
})
.unwrap()
.def_id())
}
def::FromImpl(def_id) => {
let impl_items = self.analysis
.ty_cx
.impl_items
.borrow();
Some(impl_items.get(&def_id)
.unwrap()
.iter()
.find(|mr| {
ty::impl_or_trait_item(
&self.analysis.ty_cx,
mr.def_id()
).name() == ti.name()
})
.unwrap()
.def_id())
}
}
} else {
None
};
self.fmt.meth_call_str(span,
sub_span,
defid,
Some(declid),
self.cur_scope);
},
def::DefFn(def_id, _) => {
self.fmt.fn_call_str(span,
sub_span,
def_id,
self.cur_scope)
}
_ => self.sess.span_bug(span,
&format!("Unexpected def kind while looking \
up path in `{}`: `{:?}`",
self.span.snippet(span),
def)),
}
// modules or types in the path prefix
match def {
def::DefMethod(did, _) => {
let ti = ty::impl_or_trait_item(&self.analysis.ty_cx, did);
if let ty::MethodTraitItem(m) = ti {
if m.explicit_self == ty::StaticExplicitSelfCategory {
self.write_sub_path_trait_truncated(path);
}
}
}
def::DefLocal(_) |
def::DefStatic(_,_) |
def::DefConst(..) |
def::DefAssociatedConst(..) |
def::DefStruct(_) |
def::DefVariant(..) |
def::DefFn(..) => self.write_sub_paths_truncated(path, false),
_ => {},
}
}
fn process_struct_lit(&mut self,
ex: &ast::Expr,
path: &ast::Path,
fields: &Vec<ast::Field>,
base: &Option<P<ast::Expr>>) {
if generated_code(path.span) {
return
}
self.write_sub_paths_truncated(path, false);
let ty = &ty::expr_ty_adjusted(&self.analysis.ty_cx, ex).sty;
let struct_def = match *ty {
ty::ty_struct(def_id, _) => {
let sub_span = self.span.span_for_last_ident(path.span);
self.fmt.ref_str(recorder::StructRef,
path.span,
sub_span,
def_id,
self.cur_scope);
Some(def_id)
}
_ => None
};
for field in fields {
match struct_def {
Some(struct_def) => {
let fields = ty::lookup_struct_fields(&self.analysis.ty_cx, struct_def);
for f in &fields {
if generated_code(field.ident.span) {
continue;
}
if f.name == field.ident.node.name {
// We don't really need a sub-span here, but no harm done
let sub_span = self.span.span_for_last_ident(field.ident.span);
self.fmt.ref_str(recorder::VarRef,
field.ident.span,
sub_span,
f.id,
self.cur_scope);
}
}
}
None => {}
}
self.visit_expr(&*field.expr)
}
visit::walk_expr_opt(self, base)
}
fn process_method_call(&mut self,
ex: &ast::Expr,
args: &Vec<P<ast::Expr>>) {
let method_map = self.analysis.ty_cx.method_map.borrow();
let method_callee = method_map.get(&ty::MethodCall::expr(ex.id)).unwrap();
let (def_id, decl_id) = match method_callee.origin {
ty::MethodStatic(def_id) |
ty::MethodStaticClosure(def_id) => {
// method invoked on an object with a concrete type (not a static method)
let decl_id =
match ty::trait_item_of_item(&self.analysis.ty_cx,
def_id) {
None => None,
Some(decl_id) => Some(decl_id.def_id()),
};
// This incantation is required if the method referenced is a
// trait's default implementation.
let def_id = match ty::impl_or_trait_item(&self.analysis
.ty_cx,
def_id) {
ty::MethodTraitItem(method) => {
method.provided_source.unwrap_or(def_id)
}
_ => self.sess
.span_bug(ex.span,
"save::process_method_call: non-method \
DefId in MethodStatic or MethodStaticClosure"),
};
(Some(def_id), decl_id)
}
ty::MethodTypeParam(ref mp) => {
// method invoked on a type parameter
let trait_item = ty::trait_item(&self.analysis.ty_cx,
mp.trait_ref.def_id,
mp.method_num);
(None, Some(trait_item.def_id()))
}
ty::MethodTraitObject(ref mo) => {
// method invoked on a trait instance
let trait_item = ty::trait_item(&self.analysis.ty_cx,
mo.trait_ref.def_id,
mo.method_num);
(None, Some(trait_item.def_id()))
}
};
let sub_span = self.span.sub_span_for_meth_name(ex.span);
self.fmt.meth_call_str(ex.span,
sub_span,
def_id,
decl_id,
self.cur_scope);
// walk receiver and args
visit::walk_exprs(self, &args);
}
fn process_pat(&mut self, p:&ast::Pat) {
if generated_code(p.span) {
return
}
match p.node {
ast::PatStruct(ref path, ref fields, _) => {
visit::walk_path(self, path);
let def = self.analysis.ty_cx.def_map.borrow().get(&p.id).unwrap().full_def();
let struct_def = match def {
def::DefConst(..) | def::DefAssociatedConst(..) => None,
def::DefVariant(_, variant_id, _) => Some(variant_id),
_ => {
match ty::ty_to_def_id(ty::node_id_to_type(&self.analysis.ty_cx, p.id)) {
None => {
self.sess.span_bug(p.span,
&format!("Could not find struct_def for `{}`",
self.span.snippet(p.span)));
}
Some(def_id) => Some(def_id),
}
}
};
if let Some(struct_def) = struct_def {
let struct_fields = ty::lookup_struct_fields(&self.analysis.ty_cx, struct_def);
for &Spanned { node: ref field, span } in fields {
let sub_span = self.span.span_for_first_ident(span);
for f in &struct_fields {
if f.name == field.ident.name {
self.fmt.ref_str(recorder::VarRef,
span,
sub_span,
f.id,
self.cur_scope);
break;
}
}
self.visit_pat(&*field.pat);
}
}
}
_ => visit::walk_pat(self, p)
}
}
}
impl<'l, 'tcx, 'v> Visitor<'v> for DumpCsvVisitor<'l, 'tcx> {
fn visit_item(&mut self, item: &ast::Item) {
if generated_code(item.span) {
return
}
match item.node {
ast::ItemUse(ref use_item) => {
match use_item.node {
ast::ViewPathSimple(ident, ref path) => {
let sub_span = self.span.span_for_last_ident(path.span);
let mod_id = match self.lookup_type_ref(item.id) {
Some(def_id) => {
match self.lookup_def_kind(item.id, path.span) {
Some(kind) => self.fmt.ref_str(kind,
path.span,
sub_span,
def_id,
self.cur_scope),
None => {},
}
Some(def_id)
},
None => None,
};
// 'use' always introduces an alias, if there is not an explicit
// one, there is an implicit one.
let sub_span =
match self.span.sub_span_after_keyword(use_item.span, keywords::As) {
Some(sub_span) => Some(sub_span),
None => sub_span,
};
self.fmt.use_alias_str(path.span,
sub_span,
item.id,
mod_id,
&get_ident(ident),
self.cur_scope);
self.write_sub_paths_truncated(path, true);
}
ast::ViewPathGlob(ref path) => {
// Make a comma-separated list of names of imported modules.
let mut name_string = String::new();
let glob_map = &self.analysis.glob_map;
let glob_map = glob_map.as_ref().unwrap();
if glob_map.contains_key(&item.id) {
for n in glob_map.get(&item.id).unwrap() {
if !name_string.is_empty() {
name_string.push_str(", ");
}
name_string.push_str(n.as_str());
}
}
let sub_span = self.span.sub_span_of_token(path.span,
token::BinOp(token::Star));
self.fmt.use_glob_str(path.span,
sub_span,
item.id,
&name_string,
self.cur_scope);
self.write_sub_paths(path, true);
}
ast::ViewPathList(ref path, ref list) => {
for plid in list {
match plid.node {
ast::PathListIdent { id, .. } => {
match self.lookup_type_ref(id) {
Some(def_id) =>
match self.lookup_def_kind(id, plid.span) {
Some(kind) => {
self.fmt.ref_str(
kind, plid.span,
Some(plid.span),
def_id, self.cur_scope);
}
None => ()
},
None => ()
}
},
ast::PathListMod { .. } => ()
}
}
self.write_sub_paths(path, true);
}
}
}
ast::ItemExternCrate(ref s) => {
let name = get_ident(item.ident);
let name = &name;
let location = match *s {
Some(s) => s.to_string(),
None => name.to_string(),
};
let alias_span = self.span.span_for_last_ident(item.span);
let cnum = match self.sess.cstore.find_extern_mod_stmt_cnum(item.id) {
Some(cnum) => cnum,
None => 0,
};
self.fmt.extern_crate_str(item.span,
alias_span,
item.id,
cnum,
name,
&location,
self.cur_scope);
}
ast::ItemFn(ref decl, _, _, _, ref ty_params, ref body) =>
self.process_fn(item, &**decl, ty_params, &**body),
ast::ItemStatic(ref typ, _, ref expr) =>
self.process_static_or_const_item(item, typ, expr),
ast::ItemConst(ref typ, ref expr) =>
self.process_static_or_const_item(item, &typ, &expr),
ast::ItemStruct(ref def, ref ty_params) => self.process_struct(item, &**def, ty_params),
ast::ItemEnum(ref def, ref ty_params) => self.process_enum(item, def, ty_params),
ast::ItemImpl(_, _,
ref ty_params,
ref trait_ref,
ref typ,
ref impl_items) => {
self.process_impl(item,
ty_params,
trait_ref,
&**typ,
impl_items)
}
ast::ItemTrait(_, ref generics, ref trait_refs, ref methods) =>
self.process_trait(item, generics, trait_refs, methods),
ast::ItemMod(ref m) => {
self.process_mod(item);
self.nest(item.id, |v| visit::walk_mod(v, m));
}
ast::ItemTy(ref ty, ref ty_params) => {
let qualname = format!("::{}", self.analysis.ty_cx.map.path_to_string(item.id));
let value = ty_to_string(&**ty);
let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type);
self.fmt.typedef_str(item.span,
sub_span,
item.id,
&qualname,
&value);
self.visit_ty(&**ty);
self.process_generic_params(ty_params, item.span, &qualname, item.id);
},
ast::ItemMac(_) => (),
_ => visit::walk_item(self, item),
}
}
fn visit_generics(&mut self, generics: &ast::Generics) {
for param in generics.ty_params.iter() {
for bound in param.bounds.iter() {
if let ast::TraitTyParamBound(ref trait_ref, _) = *bound {
self.process_trait_ref(&trait_ref.trait_ref);
}
}
if let Some(ref ty) = param.default {
self.visit_ty(&**ty);
}
}
}
fn visit_trait_item(&mut self, trait_item: &ast::TraitItem) {
match trait_item.node {
ast::ConstTraitItem(ref ty, Some(ref expr)) => {
self.process_const(trait_item.id, &trait_item.ident,
trait_item.span, &*ty, &*expr);
}
ast::MethodTraitItem(ref sig, ref body) => {
self.process_method(sig, body.as_ref().map(|x| &**x),
trait_item.id, trait_item.ident.name, trait_item.span);
}
ast::ConstTraitItem(_, None) |
ast::TypeTraitItem(..) => {}
}
}
fn visit_impl_item(&mut self, impl_item: &ast::ImplItem) {
match impl_item.node {
ast::ConstImplItem(ref ty, ref expr) => {
self.process_const(impl_item.id, &impl_item.ident,
impl_item.span, &ty, &expr);
}
ast::MethodImplItem(ref sig, ref body) => {
self.process_method(sig, Some(body), impl_item.id,
impl_item.ident.name, impl_item.span);
}
ast::TypeImplItem(_) |
ast::MacImplItem(_) => {}
}
}
fn visit_ty(&mut self, t: &ast::Ty) {
if generated_code(t.span) {
return
}
match t.node {
ast::TyPath(_, ref path) => {
match self.lookup_type_ref(t.id) {
Some(id) => {
let sub_span = self.span.sub_span_for_type_name(t.span);
self.fmt.ref_str(recorder::TypeRef,
t.span,
sub_span,
id,
self.cur_scope);
},
None => ()
}
self.write_sub_paths_truncated(path, false);
visit::walk_path(self, path);
},
_ => visit::walk_ty(self, t),
}
}
fn visit_expr(&mut self, ex: &ast::Expr) {
if generated_code(ex.span) {
return
}
match ex.node {
ast::ExprCall(ref _f, ref _args) => {
// Don't need to do anything for function calls,
// because just walking the callee path does what we want.
visit::walk_expr(self, ex);
}
ast::ExprPath(_, ref path) => {
self.process_path(ex.id, path.span, path, None);
visit::walk_expr(self, ex);
}
ast::ExprStruct(ref path, ref fields, ref base) =>
self.process_struct_lit(ex, path, fields, base),
ast::ExprMethodCall(_, _, ref args) => self.process_method_call(ex, args),
ast::ExprField(ref sub_ex, _) => {
if generated_code(sub_ex.span) {
return
}
self.visit_expr(&sub_ex);
let field_data = self.save_ctxt.get_expr_data(ex);
if let super::Data::VariableRefData(field_data) = field_data {
self.fmt.ref_str(recorder::VarRef,
ex.span,
Some(field_data.span),
field_data.ref_id,
field_data.scope);
} else {
self.sess.span_bug(ex.span, "expected VariableRefData");
}
},
ast::ExprTupField(ref sub_ex, idx) => {
if generated_code(sub_ex.span) {
return
}
self.visit_expr(&**sub_ex);
let ty = &ty::expr_ty_adjusted(&self.analysis.ty_cx, &**sub_ex).sty;
match *ty {
ty::ty_struct(def_id, _) => {
let fields = ty::lookup_struct_fields(&self.analysis.ty_cx, def_id);
for (i, f) in fields.iter().enumerate() {
if i == idx.node {
let sub_span = self.span.sub_span_after_token(ex.span, token::Dot);
self.fmt.ref_str(recorder::VarRef,
ex.span,
sub_span,
f.id,
self.cur_scope);
break;
}
}
}
ty::ty_tup(_) => {}
_ => self.sess.span_bug(ex.span,
&format!("Expected struct or tuple \
type, found {:?}", ty)),
}
},
ast::ExprClosure(_, ref decl, ref body) => {
if generated_code(body.span) {
return
}
let mut id = String::from("$");
id.push_str(&ex.id.to_string());
self.process_formals(&decl.inputs, &id);
// walk arg and return types
for arg in &decl.inputs {
self.visit_ty(&*arg.ty);
}
if let ast::Return(ref ret_ty) = decl.output {
self.visit_ty(&**ret_ty);
}
// walk the body
self.nest(ex.id, |v| v.visit_block(&**body));
},
_ => {
visit::walk_expr(self, ex)
}
}
}
fn visit_mac(&mut self, _: &ast::Mac) {
// Just stop, macros are poison to us.
}
fn visit_pat(&mut self, p: &ast::Pat) {
self.process_pat(p);
}
fn visit_arm(&mut self, arm: &ast::Arm) {
2015-05-05 05:03:20 -05:00
let mut collector = PathCollector::new();
for pattern in &arm.pats {
// collect paths from the arm's patterns
2015-05-05 05:03:20 -05:00
collector.visit_pat(&pattern);
self.visit_pat(&pattern);
}
// This is to get around borrow checking, because we need mut self to call process_path.
let mut paths_to_process = vec![];
// process collected paths
for &(id, ref p, immut, ref_kind) in &collector.collected_paths {
let def_map = self.analysis.ty_cx.def_map.borrow();
if !def_map.contains_key(&id) {
self.sess.span_bug(p.span,
&format!("def_map has no key for {} in visit_arm",
id));
}
let def = def_map.get(&id).unwrap().full_def();
match def {
def::DefLocal(id) => {
let value = if immut == ast::MutImmutable {
self.span.snippet(p.span).to_string()
} else {
"<mutable>".to_string()
};
assert!(p.segments.len() == 1, "qualified path for local variable def in arm");
self.fmt.variable_str(p.span,
Some(p.span),
id,
&path_to_string(p),
&value,
"")
}
def::DefVariant(..) | def::DefTy(..) | def::DefStruct(..) => {
paths_to_process.push((id, p.clone(), Some(ref_kind)))
}
// FIXME(nrc) what are these doing here?
def::DefStatic(_, _) |
def::DefConst(..) |
def::DefAssociatedConst(..) => {}
_ => error!("unexpected definition kind when processing collected paths: {:?}",
def)
}
}
for &(id, ref path, ref_kind) in &paths_to_process {
self.process_path(id, path.span, path, ref_kind);
}
visit::walk_expr_opt(self, &arm.guard);
self.visit_expr(&*arm.body);
}
fn visit_stmt(&mut self, s: &ast::Stmt) {
if generated_code(s.span) {
return
}
visit::walk_stmt(self, s)
}
fn visit_local(&mut self, l: &ast::Local) {
if generated_code(l.span) {
return
}
// The local could declare multiple new vars, we must walk the
// pattern and collect them all.
2015-05-05 05:03:20 -05:00
let mut collector = PathCollector::new();
collector.visit_pat(&l.pat);
self.visit_pat(&l.pat);
let value = self.span.snippet(l.span);
for &(id, ref p, immut, _) in &collector.collected_paths {
let value = if immut == ast::MutImmutable {
value.to_string()
} else {
"<mutable>".to_string()
};
let types = self.analysis.ty_cx.node_types();
let typ = ppaux::ty_to_string(&self.analysis.ty_cx, *types.get(&id).unwrap());
// Get the span only for the name of the variable (I hope the path
// is only ever a variable name, but who knows?).
let sub_span = self.span.span_for_last_ident(p.span);
// Rust uses the id of the pattern for var lookups, so we'll use it too.
self.fmt.variable_str(p.span,
sub_span,
id,
&path_to_string(p),
&value,
&typ);
}
// Just walk the initialiser and type (don't want to walk the pattern again).
visit::walk_ty_opt(self, &l.ty);
visit::walk_expr_opt(self, &l.init);
}
}