2014-09-12 10:53:35 -04:00
|
|
|
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
|
|
|
|
2015-02-18 19:34:55 -08:00
|
|
|
//! See `README.md` for high-level documentation
|
2014-10-09 17:19:50 -04:00
|
|
|
#![allow(dead_code)] // FIXME -- just temporarily
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-11-06 00:05:53 -08:00
|
|
|
pub use self::MethodMatchResult::*;
|
|
|
|
pub use self::MethodMatchedData::*;
|
2014-12-17 14:16:28 -05:00
|
|
|
use self::SelectionCandidate::*;
|
2014-11-06 00:05:53 -08:00
|
|
|
use self::BuiltinBoundConditions::*;
|
|
|
|
use self::EvaluationResult::*;
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
use super::coherence;
|
2015-02-19 10:30:45 -05:00
|
|
|
use super::DerivedObligationCause;
|
|
|
|
use super::project;
|
|
|
|
use super::project::{normalize_with_depth, Normalized};
|
2015-02-13 15:15:05 +11:00
|
|
|
use super::{PredicateObligation, TraitObligation, ObligationCause};
|
2015-03-28 02:23:20 -07:00
|
|
|
use super::report_overflow_error;
|
2015-02-02 12:14:01 +01:00
|
|
|
use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
|
2015-03-20 06:48:40 -04:00
|
|
|
use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch};
|
2015-04-15 11:57:29 +12:00
|
|
|
use super::{ObjectCastObligation, Obligation};
|
|
|
|
use super::TraitNotObjectSafe;
|
2015-03-28 02:23:20 -07:00
|
|
|
use super::Selection;
|
|
|
|
use super::SelectionResult;
|
2015-01-24 22:00:03 +02:00
|
|
|
use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure,
|
2015-02-07 14:24:34 +01:00
|
|
|
VtableFnPointer, VtableObject, VtableDefaultImpl};
|
|
|
|
use super::{VtableImplData, VtableObjectData, VtableBuiltinData, VtableDefaultImplData};
|
2014-12-23 05:26:34 -05:00
|
|
|
use super::object_safety;
|
2015-03-28 02:23:20 -07:00
|
|
|
use super::util;
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-11-16 07:10:37 -05:00
|
|
|
use middle::fast_reject;
|
2015-06-03 02:14:45 +03:00
|
|
|
use middle::subst::{Subst, Substs, TypeSpace};
|
2015-04-15 11:57:29 +12:00
|
|
|
use middle::ty::{self, AsPredicate, RegionEscape, ToPolyTraitRef, Ty};
|
2014-11-25 16:59:02 -05:00
|
|
|
use middle::infer;
|
2014-12-12 06:13:42 -05:00
|
|
|
use middle::infer::{InferCtxt, TypeFreshener};
|
2014-10-09 17:19:50 -04:00
|
|
|
use middle::ty_fold::TypeFoldable;
|
2015-03-20 08:17:09 -04:00
|
|
|
use middle::ty_match;
|
|
|
|
use middle::ty_relate::TypeRelation;
|
2014-09-17 16:12:02 -04:00
|
|
|
use std::cell::RefCell;
|
2014-09-12 10:53:35 -04:00
|
|
|
use std::rc::Rc;
|
2014-12-01 09:23:40 -05:00
|
|
|
use syntax::{abi, ast};
|
2014-11-08 06:59:10 -05:00
|
|
|
use util::common::ErrorReported;
|
2015-03-18 07:54:31 -04:00
|
|
|
use util::nodemap::FnvHashMap;
|
2014-09-12 10:53:35 -04:00
|
|
|
use util::ppaux::Repr;
|
|
|
|
|
|
|
|
pub struct SelectionContext<'cx, 'tcx:'cx> {
|
|
|
|
infcx: &'cx InferCtxt<'cx, 'tcx>,
|
2015-01-24 22:00:03 +02:00
|
|
|
closure_typer: &'cx (ty::ClosureTyper<'tcx>+'cx),
|
2014-10-09 17:19:50 -04:00
|
|
|
|
2014-12-12 06:13:42 -05:00
|
|
|
/// Freshener used specifically for skolemizing entries on the
|
2014-10-09 17:19:50 -04:00
|
|
|
/// obligation stack. This ensures that all entries on the stack
|
|
|
|
/// at one time will have the same set of skolemized entries,
|
|
|
|
/// which is important for checking for trait bounds that
|
|
|
|
/// recursively require themselves.
|
2014-12-12 06:13:42 -05:00
|
|
|
freshener: TypeFreshener<'cx, 'tcx>,
|
2014-11-03 14:48:03 -05:00
|
|
|
|
|
|
|
/// If true, indicates that the evaluation should be conservative
|
|
|
|
/// and consider the possibility of types outside this crate.
|
|
|
|
/// This comes up primarily when resolving ambiguity. Imagine
|
|
|
|
/// there is some trait reference `$0 : Bar` where `$0` is an
|
|
|
|
/// inference variable. If `intercrate` is true, then we can never
|
|
|
|
/// say for sure that this reference is not implemented, even if
|
|
|
|
/// there are *no impls at all for `Bar`*, because `$0` could be
|
|
|
|
/// bound to some type that in a downstream crate that implements
|
|
|
|
/// `Bar`. This is the suitable mode for coherence. Elsewhere,
|
|
|
|
/// though, we set this to false, because we are only interested
|
|
|
|
/// in types that the user could actually have written --- in
|
|
|
|
/// other words, we consider `$0 : Bar` to be unimplemented if
|
|
|
|
/// there is no type that the user could *actually name* that
|
|
|
|
/// would satisfy it. This avoids crippling inference, basically.
|
|
|
|
intercrate: bool,
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
// A stack that walks back up the stack frame.
|
2014-12-05 00:03:03 -05:00
|
|
|
struct TraitObligationStack<'prev, 'tcx: 'prev> {
|
|
|
|
obligation: &'prev TraitObligation<'tcx>,
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
/// Trait ref from `obligation` but skolemized with the
|
2014-12-12 06:13:42 -05:00
|
|
|
/// selection-context's freshener. Used to check for recursion.
|
2014-12-17 14:16:28 -05:00
|
|
|
fresh_trait_ref: ty::PolyTraitRef<'tcx>,
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
previous: TraitObligationStackList<'prev, 'tcx>,
|
2014-09-17 16:12:02 -04:00
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-01-03 22:54:18 -05:00
|
|
|
#[derive(Clone)]
|
2014-09-29 22:11:30 +03:00
|
|
|
pub struct SelectionCache<'tcx> {
|
2015-04-21 18:59:58 +03:00
|
|
|
hashmap: RefCell<FnvHashMap<ty::TraitRef<'tcx>,
|
2015-03-18 07:54:31 -04:00
|
|
|
SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-10-17 08:51:43 -04:00
|
|
|
pub enum MethodMatchResult {
|
|
|
|
MethodMatched(MethodMatchedData),
|
|
|
|
MethodAmbiguous(/* list of impls that could apply */ Vec<ast::DefId>),
|
|
|
|
MethodDidNotMatch,
|
|
|
|
}
|
|
|
|
|
2015-03-30 09:38:44 -04:00
|
|
|
#[derive(Copy, Clone, Debug)]
|
2014-10-17 08:51:43 -04:00
|
|
|
pub enum MethodMatchedData {
|
|
|
|
// In the case of a precise match, we don't really need to store
|
|
|
|
// how the match was found. So don't.
|
|
|
|
PreciseMethodMatch,
|
|
|
|
|
|
|
|
// In the case of a coercion, we need to know the precise impl so
|
|
|
|
// that we can determine the type to which things were coerced.
|
|
|
|
CoerciveMethodMatch(/* impl we matched */ ast::DefId)
|
|
|
|
}
|
|
|
|
|
2014-11-24 20:06:06 -05:00
|
|
|
/// The selection process begins by considering all impls, where
|
|
|
|
/// clauses, and so forth that might resolve an obligation. Sometimes
|
|
|
|
/// we'll be able to say definitively that (e.g.) an impl does not
|
2015-03-25 17:06:52 -07:00
|
|
|
/// apply to the obligation: perhaps it is defined for `usize` but the
|
2014-11-24 20:06:06 -05:00
|
|
|
/// obligation is for `int`. In that case, we drop the impl out of the
|
|
|
|
/// list. But the other cases are considered *candidates*.
|
|
|
|
///
|
2015-05-07 22:21:57 +03:00
|
|
|
/// For selection to succeed, there must be exactly one matching
|
|
|
|
/// candidate. If the obligation is fully known, this is guaranteed
|
|
|
|
/// by coherence. However, if the obligation contains type parameters
|
|
|
|
/// or variables, there may be multiple such impls.
|
2014-11-24 20:06:06 -05:00
|
|
|
///
|
2015-05-07 22:21:57 +03:00
|
|
|
/// It is not a real problem if multiple matching impls exist because
|
|
|
|
/// of type variables - it just means the obligation isn't sufficiently
|
|
|
|
/// elaborated. In that case we report an ambiguity, and the caller can
|
|
|
|
/// try again after more type information has been gathered or report a
|
|
|
|
/// "type annotations required" error.
|
|
|
|
///
|
|
|
|
/// However, with type parameters, this can be a real problem - type
|
|
|
|
/// parameters don't unify with regular types, but they *can* unify
|
|
|
|
/// with variables from blanket impls, and (unless we know its bounds
|
|
|
|
/// will always be satisfied) picking the blanket impl will be wrong
|
|
|
|
/// for at least *some* substitutions. To make this concrete, if we have
|
|
|
|
///
|
|
|
|
/// trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
|
|
|
|
/// impl<T: fmt::Debug> AsDebug for T {
|
|
|
|
/// type Out = T;
|
|
|
|
/// fn debug(self) -> fmt::Debug { self }
|
|
|
|
/// }
|
|
|
|
/// fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
|
|
|
|
///
|
|
|
|
/// we can't just use the impl to resolve the <T as AsDebug> obligation
|
|
|
|
/// - a type from another crate (that doesn't implement fmt::Debug) could
|
|
|
|
/// implement AsDebug.
|
|
|
|
///
|
|
|
|
/// Because where-clauses match the type exactly, multiple clauses can
|
|
|
|
/// only match if there are unresolved variables, and we can mostly just
|
|
|
|
/// report this ambiguity in that case. This is still a problem - we can't
|
|
|
|
/// *do anything* with ambiguities that involve only regions. This is issue
|
|
|
|
/// #21974.
|
|
|
|
///
|
|
|
|
/// If a single where-clause matches and there are no inference
|
|
|
|
/// variables left, then it definitely matches and we can just select
|
|
|
|
/// it.
|
|
|
|
///
|
|
|
|
/// In fact, we even select the where-clause when the obligation contains
|
|
|
|
/// inference variables. The can lead to inference making "leaps of logic",
|
|
|
|
/// for example in this situation:
|
|
|
|
///
|
|
|
|
/// pub trait Foo<T> { fn foo(&self) -> T; }
|
|
|
|
/// impl<T> Foo<()> for T { fn foo(&self) { } }
|
|
|
|
/// impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
|
|
|
|
///
|
|
|
|
/// pub fn foo<T>(t: T) where T: Foo<bool> {
|
|
|
|
/// println!("{:?}", <T as Foo<_>>::foo(&t));
|
|
|
|
/// }
|
|
|
|
/// fn main() { foo(false); }
|
|
|
|
///
|
|
|
|
/// Here the obligation <T as Foo<$0>> can be matched by both the blanket
|
|
|
|
/// impl and the where-clause. We select the where-clause and unify $0=bool,
|
|
|
|
/// so the program prints "false". However, if the where-clause is omitted,
|
|
|
|
/// the blanket impl is selected, we unify $0=(), and the program prints
|
|
|
|
/// "()".
|
|
|
|
///
|
|
|
|
/// Exactly the same issues apply to projection and object candidates, except
|
|
|
|
/// that we can have both a projection candidate and a where-clause candidate
|
|
|
|
/// for the same obligation. In that case either would do (except that
|
|
|
|
/// different "leaps of logic" would occur if inference variables are
|
|
|
|
/// present), and we just pick the projection. This is, for example,
|
|
|
|
/// required for associated types to work in default impls, as the bounds
|
|
|
|
/// are visible both as projection bounds and as where-clauses from the
|
|
|
|
/// parameter environment.
|
2015-01-28 08:34:18 -05:00
|
|
|
#[derive(PartialEq,Eq,Debug,Clone)]
|
2014-12-17 14:16:28 -05:00
|
|
|
enum SelectionCandidate<'tcx> {
|
2015-02-12 05:16:02 -05:00
|
|
|
PhantomFnCandidate,
|
2014-10-09 17:19:50 -04:00
|
|
|
BuiltinCandidate(ty::BuiltinBound),
|
2014-12-27 04:22:29 -05:00
|
|
|
ParamCandidate(ty::PolyTraitRef<'tcx>),
|
2014-10-09 17:19:50 -04:00
|
|
|
ImplCandidate(ast::DefId),
|
2015-02-07 14:24:34 +01:00
|
|
|
DefaultImplCandidate(ast::DefId),
|
2015-03-24 15:55:29 -04:00
|
|
|
DefaultImplObjectCandidate(ast::DefId),
|
2014-12-01 09:23:40 -05:00
|
|
|
|
2014-12-27 04:22:29 -05:00
|
|
|
/// This is a trait matching with a projected type as `Self`, and
|
|
|
|
/// we found an applicable bound in the trait definition.
|
|
|
|
ProjectionCandidate,
|
|
|
|
|
2014-12-01 09:23:40 -05:00
|
|
|
/// Implementation of a `Fn`-family trait by one of the
|
|
|
|
/// anonymous types generated for a `||` expression.
|
2015-01-24 22:00:03 +02:00
|
|
|
ClosureCandidate(/* closure */ ast::DefId, Substs<'tcx>),
|
2014-12-01 09:23:40 -05:00
|
|
|
|
|
|
|
/// Implementation of a `Fn`-family trait by one of the anonymous
|
|
|
|
/// types generated for a fn pointer type (e.g., `fn(int)->int`)
|
|
|
|
FnPointerCandidate,
|
|
|
|
|
2014-12-23 05:26:34 -05:00
|
|
|
ObjectCandidate,
|
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
BuiltinObjectCandidate,
|
|
|
|
|
2015-04-15 11:57:29 +12:00
|
|
|
BuiltinUnsizeCandidate,
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
ErrorCandidate,
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-12-17 14:16:28 -05:00
|
|
|
struct SelectionCandidateSet<'tcx> {
|
2014-12-30 08:59:33 -05:00
|
|
|
// a list of candidates that definitely apply to the current
|
|
|
|
// obligation (meaning: types unify).
|
2014-12-17 14:16:28 -05:00
|
|
|
vec: Vec<SelectionCandidate<'tcx>>,
|
2014-12-30 08:59:33 -05:00
|
|
|
|
|
|
|
// if this is true, then there were candidates that might or might
|
|
|
|
// not have applied, but we couldn't tell. This occurs when some
|
|
|
|
// of the input types are type variables, in which case there are
|
|
|
|
// various "builtin" rules that might or might not trigger.
|
|
|
|
ambiguous: bool,
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
enum BuiltinBoundConditions<'tcx> {
|
2015-03-26 15:53:00 -04:00
|
|
|
If(ty::Binder<Vec<Ty<'tcx>>>),
|
2014-10-09 17:19:50 -04:00
|
|
|
ParameterBuiltin,
|
|
|
|
AmbiguousBuiltin
|
|
|
|
}
|
|
|
|
|
2015-01-28 08:34:18 -05:00
|
|
|
#[derive(Debug)]
|
2014-12-02 14:04:10 -05:00
|
|
|
enum EvaluationResult<'tcx> {
|
2014-10-09 17:19:50 -04:00
|
|
|
EvaluatedToOk,
|
|
|
|
EvaluatedToAmbig,
|
2014-12-02 14:04:10 -05:00
|
|
|
EvaluatedToErr(SelectionError<'tcx>),
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
|
|
|
|
pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>,
|
2015-01-24 22:00:03 +02:00
|
|
|
closure_typer: &'cx ty::ClosureTyper<'tcx>)
|
2014-09-12 10:53:35 -04:00
|
|
|
-> SelectionContext<'cx, 'tcx> {
|
2014-09-18 11:08:04 -04:00
|
|
|
SelectionContext {
|
|
|
|
infcx: infcx,
|
2015-01-01 16:04:51 -05:00
|
|
|
closure_typer: closure_typer,
|
2014-12-12 06:13:42 -05:00
|
|
|
freshener: infcx.freshener(),
|
2014-11-03 14:48:03 -05:00
|
|
|
intercrate: false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'tcx>,
|
2015-01-24 22:00:03 +02:00
|
|
|
closure_typer: &'cx ty::ClosureTyper<'tcx>)
|
2014-11-03 14:48:03 -05:00
|
|
|
-> SelectionContext<'cx, 'tcx> {
|
|
|
|
SelectionContext {
|
|
|
|
infcx: infcx,
|
2015-01-01 16:04:51 -05:00
|
|
|
closure_typer: closure_typer,
|
2014-12-12 06:13:42 -05:00
|
|
|
freshener: infcx.freshener(),
|
2014-11-03 14:48:03 -05:00
|
|
|
intercrate: true,
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-12-07 11:10:48 -05:00
|
|
|
pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
|
|
|
|
self.infcx
|
|
|
|
}
|
|
|
|
|
2014-09-12 10:53:35 -04:00
|
|
|
pub fn tcx(&self) -> &'cx ty::ctxt<'tcx> {
|
|
|
|
self.infcx.tcx
|
|
|
|
}
|
|
|
|
|
2015-01-02 04:09:35 -05:00
|
|
|
pub fn param_env(&self) -> &'cx ty::ParameterEnvironment<'cx, 'tcx> {
|
|
|
|
self.closure_typer.param_env()
|
|
|
|
}
|
|
|
|
|
2015-01-11 15:18:06 -05:00
|
|
|
pub fn closure_typer(&self) -> &'cx (ty::ClosureTyper<'tcx>+'cx) {
|
2015-01-10 11:54:15 -05:00
|
|
|
self.closure_typer
|
|
|
|
}
|
|
|
|
|
2014-09-12 10:53:35 -04:00
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// Selection
|
|
|
|
//
|
|
|
|
// The selection phase tries to identify *how* an obligation will
|
|
|
|
// be resolved. For example, it will identify which impl or
|
|
|
|
// parameter bound is to be used. The process can be inconclusive
|
|
|
|
// if the self type in the obligation is not fully inferred. Selection
|
|
|
|
// can result in an error in one of two ways:
|
|
|
|
//
|
|
|
|
// 1. If no applicable impl or parameter bound can be found.
|
|
|
|
// 2. If the output type parameters in the obligation do not match
|
|
|
|
// those specified by the impl/bound. For example, if the obligation
|
|
|
|
// is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
|
|
|
|
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
|
|
|
|
|
2015-02-02 11:52:08 -05:00
|
|
|
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
|
|
|
|
/// type environment by performing unification.
|
2014-12-05 00:03:03 -05:00
|
|
|
pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
|
2014-09-29 22:11:30 +03:00
|
|
|
-> SelectionResult<'tcx, Selection<'tcx>> {
|
2014-09-12 10:53:35 -04:00
|
|
|
debug!("select({})", obligation.repr(self.tcx()));
|
2014-12-17 16:00:34 -05:00
|
|
|
assert!(!obligation.predicate.has_escaping_regions());
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
|
2014-09-18 11:08:04 -04:00
|
|
|
match try!(self.candidate_from_obligation(&stack)) {
|
2015-02-02 11:52:08 -05:00
|
|
|
None => {
|
|
|
|
self.consider_unification_despite_ambiguity(obligation);
|
|
|
|
Ok(None)
|
|
|
|
}
|
2014-10-09 17:19:50 -04:00
|
|
|
Some(candidate) => Ok(Some(try!(self.confirm_candidate(obligation, candidate)))),
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-02 11:52:08 -05:00
|
|
|
/// In the particular case of unboxed closure obligations, we can
|
|
|
|
/// sometimes do some amount of unification for the
|
|
|
|
/// argument/return types even though we can't yet fully match obligation.
|
|
|
|
/// The particular case we are interesting in is an obligation of the form:
|
|
|
|
///
|
|
|
|
/// C : FnFoo<A>
|
|
|
|
///
|
|
|
|
/// where `C` is an unboxed closure type and `FnFoo` is one of the
|
|
|
|
/// `Fn` traits. Because we know that users cannot write impls for closure types
|
|
|
|
/// themselves, the only way that `C : FnFoo` can fail to match is under two
|
|
|
|
/// conditions:
|
|
|
|
///
|
|
|
|
/// 1. The closure kind for `C` is not yet known, because inference isn't complete.
|
|
|
|
/// 2. The closure kind for `C` *is* known, but doesn't match what is needed.
|
|
|
|
/// For example, `C` may be a `FnOnce` closure, but a `Fn` closure is needed.
|
|
|
|
///
|
|
|
|
/// In either case, we always know what argument types are
|
|
|
|
/// expected by `C`, no matter what kind of `Fn` trait it
|
|
|
|
/// eventually matches. So we can go ahead and unify the argument
|
|
|
|
/// types, even though the end result is ambiguous.
|
|
|
|
///
|
|
|
|
/// Note that this is safe *even if* the trait would never be
|
|
|
|
/// matched (case 2 above). After all, in that case, an error will
|
|
|
|
/// result, so it kind of doesn't matter what we do --- unifying
|
|
|
|
/// the argument types can only be helpful to the user, because
|
|
|
|
/// once they patch up the kind of closure that is expected, the
|
|
|
|
/// argment types won't really change.
|
2015-02-03 06:12:43 -05:00
|
|
|
fn consider_unification_despite_ambiguity(&mut self, obligation: &TraitObligation<'tcx>) {
|
2015-02-02 11:52:08 -05:00
|
|
|
// Is this a `C : FnFoo(...)` trait reference for some trait binding `FnFoo`?
|
|
|
|
match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
|
|
|
|
Some(_) => { }
|
|
|
|
None => { return; }
|
|
|
|
}
|
|
|
|
|
|
|
|
// Is the self-type a closure type? We ignore bindings here
|
|
|
|
// because if it is a closure type, it must be a closure type from
|
|
|
|
// within this current fn, and hence none of the higher-ranked
|
|
|
|
// lifetimes can appear inside the self-type.
|
2015-03-26 15:53:00 -04:00
|
|
|
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
|
2015-02-02 11:52:08 -05:00
|
|
|
let (closure_def_id, substs) = match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyClosure(id, ref substs) => (id, substs.clone()),
|
2015-02-02 11:52:08 -05:00
|
|
|
_ => { return; }
|
|
|
|
};
|
|
|
|
assert!(!substs.has_escaping_regions());
|
|
|
|
|
|
|
|
let closure_trait_ref = self.closure_trait_ref(obligation, closure_def_id, substs);
|
|
|
|
match self.confirm_poly_trait_refs(obligation.cause.clone(),
|
|
|
|
obligation.predicate.to_poly_trait_ref(),
|
|
|
|
closure_trait_ref) {
|
|
|
|
Ok(()) => { }
|
|
|
|
Err(_) => { /* Silently ignore errors. */ }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-12 10:53:35 -04:00
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// EVALUATION
|
|
|
|
//
|
2014-10-17 08:51:43 -04:00
|
|
|
// Tests whether an obligation can be selected or whether an impl
|
|
|
|
// can be applied to particular types. It skips the "confirmation"
|
|
|
|
// step and hence completely ignores output type parameters.
|
2014-10-09 17:19:50 -04:00
|
|
|
//
|
2014-10-25 23:10:16 -04:00
|
|
|
// The result is "true" if the obligation *may* hold and "false" if
|
2014-10-09 17:19:50 -04:00
|
|
|
// we can be sure it does not.
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Evaluates whether the obligation `obligation` can be satisfied (by any means).
|
2014-11-03 14:48:03 -05:00
|
|
|
pub fn evaluate_obligation(&mut self,
|
2014-12-07 11:10:48 -05:00
|
|
|
obligation: &PredicateObligation<'tcx>)
|
2014-11-03 14:48:03 -05:00
|
|
|
-> bool
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2014-11-03 14:48:03 -05:00
|
|
|
debug!("evaluate_obligation({})",
|
2014-09-12 10:53:35 -04:00
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
self.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
|
|
|
|
.may_apply()
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn evaluate_builtin_bound_recursively<'o>(&mut self,
|
|
|
|
bound: ty::BuiltinBound,
|
2014-12-05 00:03:03 -05:00
|
|
|
previous_stack: &TraitObligationStack<'o, 'tcx>,
|
2014-09-29 22:11:30 +03:00
|
|
|
ty: Ty<'tcx>)
|
2014-12-02 14:04:10 -05:00
|
|
|
-> EvaluationResult<'tcx>
|
2014-09-18 11:08:04 -04:00
|
|
|
{
|
|
|
|
let obligation =
|
2014-12-07 11:10:48 -05:00
|
|
|
util::predicate_for_builtin_bound(
|
2014-09-18 11:08:04 -04:00
|
|
|
self.tcx(),
|
2014-12-06 11:39:25 -05:00
|
|
|
previous_stack.obligation.cause.clone(),
|
2014-09-18 11:08:04 -04:00
|
|
|
bound,
|
|
|
|
previous_stack.obligation.recursion_depth + 1,
|
|
|
|
ty);
|
2014-09-23 17:18:54 +12:00
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
match obligation {
|
|
|
|
Ok(obligation) => {
|
2015-03-30 17:46:34 -04:00
|
|
|
self.evaluate_predicate_recursively(previous_stack.list(), &obligation)
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
|
|
|
Err(ErrorReported) => {
|
|
|
|
EvaluatedToOk
|
|
|
|
}
|
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-01-02 11:39:47 -05:00
|
|
|
fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
|
2015-03-30 17:46:34 -04:00
|
|
|
stack: TraitObligationStackList<'o, 'tcx>,
|
2015-01-31 09:17:50 -05:00
|
|
|
predicates: I)
|
2015-01-02 11:39:47 -05:00
|
|
|
-> EvaluationResult<'tcx>
|
2015-01-01 23:26:38 -05:00
|
|
|
where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
|
2015-01-02 11:39:47 -05:00
|
|
|
{
|
|
|
|
let mut result = EvaluatedToOk;
|
|
|
|
for obligation in predicates {
|
|
|
|
match self.evaluate_predicate_recursively(stack, obligation) {
|
|
|
|
EvaluatedToErr(e) => { return EvaluatedToErr(e); }
|
|
|
|
EvaluatedToAmbig => { result = EvaluatedToAmbig; }
|
|
|
|
EvaluatedToOk => { }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result
|
|
|
|
}
|
|
|
|
|
2014-12-07 11:10:48 -05:00
|
|
|
fn evaluate_predicate_recursively<'o>(&mut self,
|
2015-03-30 17:46:34 -04:00
|
|
|
previous_stack: TraitObligationStackList<'o, 'tcx>,
|
2014-12-07 11:10:48 -05:00
|
|
|
obligation: &PredicateObligation<'tcx>)
|
|
|
|
-> EvaluationResult<'tcx>
|
|
|
|
{
|
|
|
|
debug!("evaluate_predicate_recursively({})",
|
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
2014-12-17 16:00:34 -05:00
|
|
|
match obligation.predicate {
|
2014-12-07 11:10:48 -05:00
|
|
|
ty::Predicate::Trait(ref t) => {
|
|
|
|
assert!(!t.has_escaping_regions());
|
|
|
|
let obligation = obligation.with(t.clone());
|
|
|
|
self.evaluate_obligation_recursively(previous_stack, &obligation)
|
|
|
|
}
|
|
|
|
|
2014-12-13 05:34:34 -05:00
|
|
|
ty::Predicate::Equate(ref p) => {
|
2014-12-14 07:17:23 -05:00
|
|
|
let result = self.infcx.probe(|_| {
|
2014-12-13 05:34:34 -05:00
|
|
|
self.infcx.equality_predicate(obligation.cause.span, p)
|
|
|
|
});
|
|
|
|
match result {
|
2014-12-07 11:10:48 -05:00
|
|
|
Ok(()) => EvaluatedToOk,
|
|
|
|
Err(_) => EvaluatedToErr(Unimplemented),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
|
|
|
|
// we do not consider region relationships when
|
|
|
|
// evaluating trait matches
|
|
|
|
EvaluatedToOk
|
|
|
|
}
|
2014-12-17 14:16:28 -05:00
|
|
|
|
2015-01-02 11:39:47 -05:00
|
|
|
ty::Predicate::Projection(ref data) => {
|
2015-01-02 13:59:32 -05:00
|
|
|
self.infcx.probe(|_| {
|
2015-01-02 11:39:47 -05:00
|
|
|
let project_obligation = obligation.with(data.clone());
|
2015-01-02 13:59:32 -05:00
|
|
|
match project::poly_project_and_unify_type(self, &project_obligation) {
|
|
|
|
Ok(Some(subobligations)) => {
|
|
|
|
self.evaluate_predicates_recursively(previous_stack,
|
|
|
|
subobligations.iter())
|
|
|
|
}
|
|
|
|
Ok(None) => {
|
|
|
|
EvaluatedToAmbig
|
|
|
|
}
|
|
|
|
Err(_) => {
|
|
|
|
EvaluatedToErr(Unimplemented)
|
|
|
|
}
|
2015-01-02 11:39:47 -05:00
|
|
|
}
|
2015-01-02 13:59:32 -05:00
|
|
|
})
|
2014-12-17 14:16:28 -05:00
|
|
|
}
|
2014-12-07 11:10:48 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn evaluate_obligation_recursively<'o>(&mut self,
|
2015-03-30 17:46:34 -04:00
|
|
|
previous_stack: TraitObligationStackList<'o, 'tcx>,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>)
|
2014-12-02 14:04:10 -05:00
|
|
|
-> EvaluationResult<'tcx>
|
2014-09-18 11:08:04 -04:00
|
|
|
{
|
|
|
|
debug!("evaluate_obligation_recursively({})",
|
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
let stack = self.push_stack(previous_stack, obligation);
|
2014-10-17 08:51:43 -04:00
|
|
|
|
2014-11-03 14:48:03 -05:00
|
|
|
let result = self.evaluate_stack(&stack);
|
2014-10-17 08:51:43 -04:00
|
|
|
|
2014-12-20 00:09:35 -08:00
|
|
|
debug!("result: {:?}", result);
|
2014-10-09 17:17:49 -04:00
|
|
|
result
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn evaluate_stack<'o>(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
stack: &TraitObligationStack<'o, 'tcx>)
|
2014-12-02 14:04:10 -05:00
|
|
|
-> EvaluationResult<'tcx>
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2014-11-03 14:48:03 -05:00
|
|
|
// In intercrate mode, whenever any of the types are unbound,
|
|
|
|
// there can always be an impl. Even if there are no impls in
|
|
|
|
// this crate, perhaps the type would be unified with
|
|
|
|
// something from another crate that does provide an impl.
|
|
|
|
//
|
|
|
|
// In intracrate mode, we must still be conservative. The reason is
|
|
|
|
// that we want to avoid cycles. Imagine an impl like:
|
|
|
|
//
|
|
|
|
// impl<T:Eq> Eq for Vec<T>
|
|
|
|
//
|
|
|
|
// and a trait reference like `$0 : Eq` where `$0` is an
|
|
|
|
// unbound variable. When we evaluate this trait-reference, we
|
|
|
|
// will unify `$0` with `Vec<$1>` (for some fresh variable
|
|
|
|
// `$1`), on the condition that `$1 : Eq`. We will then wind
|
|
|
|
// up with many candidates (since that are other `Eq` impls
|
|
|
|
// that apply) and try to winnow things down. This results in
|
2015-01-06 20:53:18 -05:00
|
|
|
// a recursive evaluation that `$1 : Eq` -- as you can
|
2014-11-03 14:48:03 -05:00
|
|
|
// imagine, this is just where we started. To avoid that, we
|
|
|
|
// check for unbound variables and return an ambiguous (hence possible)
|
|
|
|
// match if we've seen this trait before.
|
|
|
|
//
|
|
|
|
// This suffices to allow chains like `FnMut` implemented in
|
|
|
|
// terms of `Fn` etc, but we could probably make this more
|
|
|
|
// precise still.
|
2014-12-12 11:28:35 -05:00
|
|
|
let input_types = stack.fresh_trait_ref.0.input_types();
|
2014-12-12 06:13:42 -05:00
|
|
|
let unbound_input_types = input_types.iter().any(|&t| ty::type_is_fresh(t));
|
2014-11-03 14:48:03 -05:00
|
|
|
if
|
|
|
|
unbound_input_types &&
|
|
|
|
(self.intercrate ||
|
|
|
|
stack.iter().skip(1).any(
|
2015-03-20 08:17:09 -04:00
|
|
|
|prev| self.match_fresh_trait_refs(&stack.fresh_trait_ref,
|
|
|
|
&prev.fresh_trait_ref)))
|
2014-11-03 14:48:03 -05:00
|
|
|
{
|
2014-12-07 11:10:48 -05:00
|
|
|
debug!("evaluate_stack({}) --> unbound argument, recursion --> ambiguous",
|
2014-12-12 06:13:42 -05:00
|
|
|
stack.fresh_trait_ref.repr(self.tcx()));
|
2014-10-09 17:19:50 -04:00
|
|
|
return EvaluatedToAmbig;
|
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
// If there is any previous entry on the stack that precisely
|
|
|
|
// matches this obligation, then we can assume that the
|
|
|
|
// obligation is satisfied for now (still all other conditions
|
|
|
|
// must be met of course). One obvious case this comes up is
|
2014-11-17 14:41:47 -05:00
|
|
|
// marker traits like `Send`. Think of a linked list:
|
2014-09-18 11:08:04 -04:00
|
|
|
//
|
|
|
|
// struct List<T> { data: T, next: Option<Box<List<T>>> {
|
|
|
|
//
|
|
|
|
// `Box<List<T>>` will be `Send` if `T` is `Send` and
|
|
|
|
// `Option<Box<List<T>>>` is `Send`, and in turn
|
|
|
|
// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
|
|
|
|
// `Send`.
|
2014-10-09 17:19:50 -04:00
|
|
|
//
|
2014-12-12 06:13:42 -05:00
|
|
|
// Note that we do this comparison using the `fresh_trait_ref`
|
2014-10-09 17:19:50 -04:00
|
|
|
// fields. Because these have all been skolemized using
|
2014-12-12 06:13:42 -05:00
|
|
|
// `self.freshener`, we can be sure that (a) this will not
|
2014-10-09 17:19:50 -04:00
|
|
|
// affect the inferencer state and (b) that if we see two
|
|
|
|
// skolemized types with the same index, they refer to the
|
|
|
|
// same unbound type variable.
|
2014-09-18 11:08:04 -04:00
|
|
|
if
|
2014-10-09 17:19:50 -04:00
|
|
|
stack.iter()
|
|
|
|
.skip(1) // skip top-most frame
|
2014-12-12 06:13:42 -05:00
|
|
|
.any(|prev| stack.fresh_trait_ref == prev.fresh_trait_ref)
|
2014-09-18 11:08:04 -04:00
|
|
|
{
|
2014-12-07 11:10:48 -05:00
|
|
|
debug!("evaluate_stack({}) --> recursive",
|
2014-12-12 06:13:42 -05:00
|
|
|
stack.fresh_trait_ref.repr(self.tcx()));
|
2014-10-09 17:19:50 -04:00
|
|
|
return EvaluatedToOk;
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
match self.candidate_from_obligation(stack) {
|
|
|
|
Ok(Some(c)) => self.winnow_candidate(stack, &c),
|
|
|
|
Ok(None) => EvaluatedToAmbig,
|
2014-12-02 14:04:10 -05:00
|
|
|
Err(e) => EvaluatedToErr(e),
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Evaluates whether the impl with id `impl_def_id` could be applied to the self type
|
|
|
|
/// `obligation_self_ty`. This can be used either for trait or inherent impls.
|
2014-09-18 11:08:04 -04:00
|
|
|
pub fn evaluate_impl(&mut self,
|
2014-09-12 10:53:35 -04:00
|
|
|
impl_def_id: ast::DefId,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>)
|
2014-10-09 17:19:50 -04:00
|
|
|
-> bool
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2014-10-09 17:19:50 -04:00
|
|
|
debug!("evaluate_impl(impl_def_id={}, obligation={})",
|
2014-09-12 10:53:35 -04:00
|
|
|
impl_def_id.repr(self.tcx()),
|
2014-10-09 17:19:50 -04:00
|
|
|
obligation.repr(self.tcx()));
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-12-14 07:17:23 -05:00
|
|
|
self.infcx.probe(|snapshot| {
|
2015-04-19 23:38:37 +03:00
|
|
|
match self.match_impl(impl_def_id, obligation, snapshot) {
|
|
|
|
Ok((substs, skol_map)) => {
|
2014-10-17 08:51:43 -04:00
|
|
|
let vtable_impl = self.vtable_impl(impl_def_id,
|
|
|
|
substs,
|
2014-12-06 11:39:25 -05:00
|
|
|
obligation.cause.clone(),
|
2014-12-14 07:17:23 -05:00
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
skol_map,
|
|
|
|
snapshot);
|
2015-03-30 17:46:34 -04:00
|
|
|
self.winnow_selection(TraitObligationStackList::empty(),
|
|
|
|
VtableImpl(vtable_impl)).may_apply()
|
2014-10-17 08:51:43 -04:00
|
|
|
}
|
|
|
|
Err(()) => {
|
|
|
|
false
|
|
|
|
}
|
|
|
|
}
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2014-09-12 10:53:35 -04:00
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// CANDIDATE ASSEMBLY
|
|
|
|
//
|
|
|
|
// The selection process begins by examining all in-scope impls,
|
|
|
|
// caller obligations, and so forth and assembling a list of
|
2015-02-18 19:34:55 -08:00
|
|
|
// candidates. See `README.md` and the `Candidate` type for more
|
|
|
|
// details.
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn candidate_from_obligation<'o>(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
stack: &TraitObligationStack<'o, 'tcx>)
|
2014-12-17 14:16:28 -05:00
|
|
|
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2014-10-09 17:19:50 -04:00
|
|
|
// Watch out for overflow. This intentionally bypasses (and does
|
|
|
|
// not update) the cache.
|
|
|
|
let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
|
|
|
|
if stack.obligation.recursion_depth >= recursion_limit {
|
2015-03-20 06:48:40 -04:00
|
|
|
report_overflow_error(self.infcx(), &stack.obligation);
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
// Check the cache. Note that we skolemize the trait-ref
|
2014-12-12 06:13:42 -05:00
|
|
|
// separately rather than using `stack.fresh_trait_ref` -- this
|
2014-10-09 17:19:50 -04:00
|
|
|
// is because we want the unbound variables to be replaced
|
|
|
|
// with fresh skolemized types starting from index 0.
|
2014-12-17 14:16:28 -05:00
|
|
|
let cache_fresh_trait_pred =
|
2014-12-17 16:00:34 -05:00
|
|
|
self.infcx.freshen(stack.obligation.predicate.clone());
|
2014-12-17 14:16:28 -05:00
|
|
|
debug!("candidate_from_obligation(cache_fresh_trait_pred={}, obligation={})",
|
|
|
|
cache_fresh_trait_pred.repr(self.tcx()),
|
2014-09-18 11:08:04 -04:00
|
|
|
stack.repr(self.tcx()));
|
2014-12-17 16:00:34 -05:00
|
|
|
assert!(!stack.obligation.predicate.has_escaping_regions());
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-12-17 14:16:28 -05:00
|
|
|
match self.check_candidate_cache(&cache_fresh_trait_pred) {
|
2014-09-12 10:53:35 -04:00
|
|
|
Some(c) => {
|
2014-12-17 14:16:28 -05:00
|
|
|
debug!("CACHE HIT: cache_fresh_trait_pred={}, candidate={}",
|
|
|
|
cache_fresh_trait_pred.repr(self.tcx()),
|
2014-09-17 16:12:02 -04:00
|
|
|
c.repr(self.tcx()));
|
|
|
|
return c;
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
None => { }
|
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
// If no match, compute result and insert into cache.
|
2014-10-09 17:19:50 -04:00
|
|
|
let candidate = self.candidate_from_obligation_no_cache(stack);
|
2015-01-21 17:45:52 -05:00
|
|
|
|
|
|
|
if self.should_update_candidate_cache(&cache_fresh_trait_pred, &candidate) {
|
|
|
|
debug!("CACHE MISS: cache_fresh_trait_pred={}, candidate={}",
|
|
|
|
cache_fresh_trait_pred.repr(self.tcx()), candidate.repr(self.tcx()));
|
|
|
|
self.insert_candidate_cache(cache_fresh_trait_pred, candidate.clone());
|
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
candidate
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn candidate_from_obligation_no_cache<'o>(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
stack: &TraitObligationStack<'o, 'tcx>)
|
2014-12-17 14:16:28 -05:00
|
|
|
-> SelectionResult<'tcx, SelectionCandidate<'tcx>>
|
2014-09-18 11:08:04 -04:00
|
|
|
{
|
2014-12-17 14:16:28 -05:00
|
|
|
if ty::type_is_error(stack.obligation.predicate.0.self_ty()) {
|
2014-09-18 11:08:04 -04:00
|
|
|
return Ok(Some(ErrorCandidate));
|
|
|
|
}
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
if !self.is_knowable(stack) {
|
|
|
|
debug!("intercrate not knowable");
|
|
|
|
return Ok(None);
|
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
let candidate_set = try!(self.assemble_candidates(stack));
|
|
|
|
|
|
|
|
if candidate_set.ambiguous {
|
|
|
|
debug!("candidate set contains ambig");
|
|
|
|
return Ok(None);
|
|
|
|
}
|
|
|
|
|
|
|
|
let mut candidates = candidate_set.vec;
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-12-27 04:22:29 -05:00
|
|
|
debug!("assembled {} candidates for {}: {}",
|
|
|
|
candidates.len(),
|
|
|
|
stack.repr(self.tcx()),
|
|
|
|
candidates.repr(self.tcx()));
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
// At this point, we know that each of the entries in the
|
|
|
|
// candidate set is *individually* applicable. Now we have to
|
|
|
|
// figure out if they contain mutual incompatibilities. This
|
|
|
|
// frequently arises if we have an unconstrained input type --
|
|
|
|
// for example, we are looking for $0:Eq where $0 is some
|
|
|
|
// unconstrained type variable. In that case, we'll get a
|
|
|
|
// candidate which assumes $0 == int, one that assumes $0 ==
|
2015-03-25 17:06:52 -07:00
|
|
|
// usize, etc. This spells an ambiguity.
|
2014-10-09 17:19:50 -04:00
|
|
|
|
|
|
|
// If there is more than one candidate, first winnow them down
|
|
|
|
// by considering extra conditions (nested obligations and so
|
|
|
|
// forth). We don't winnow if there is exactly one
|
|
|
|
// candidate. This is a relatively minor distinction but it
|
|
|
|
// can lead to better inference and error-reporting. An
|
|
|
|
// example would be if there was an impl:
|
|
|
|
//
|
|
|
|
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
|
|
|
|
//
|
|
|
|
// and we were to see some code `foo.push_clone()` where `boo`
|
|
|
|
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
|
|
|
|
// we were to winnow, we'd wind up with zero candidates.
|
|
|
|
// Instead, we select the right impl now but report `Bar does
|
|
|
|
// not implement Clone`.
|
|
|
|
if candidates.len() > 1 {
|
|
|
|
candidates.retain(|c| self.winnow_candidate(stack, c).may_apply())
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are STILL multiple candidate, we can further reduce
|
|
|
|
// the list by dropping duplicates.
|
|
|
|
if candidates.len() > 1 {
|
|
|
|
let mut i = 0;
|
|
|
|
while i < candidates.len() {
|
|
|
|
let is_dup =
|
2015-01-26 16:05:07 -05:00
|
|
|
(0..candidates.len())
|
2014-10-09 17:19:50 -04:00
|
|
|
.filter(|&j| i != j)
|
2015-02-16 06:57:38 -05:00
|
|
|
.any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
|
2014-10-09 17:19:50 -04:00
|
|
|
&candidates[j]));
|
|
|
|
if is_dup {
|
2014-10-28 07:24:25 -04:00
|
|
|
debug!("Dropping candidate #{}/{}: {}",
|
2014-10-09 17:19:50 -04:00
|
|
|
i, candidates.len(), candidates[i].repr(self.tcx()));
|
|
|
|
candidates.swap_remove(i);
|
|
|
|
} else {
|
2014-10-28 07:24:25 -04:00
|
|
|
debug!("Retaining candidate #{}/{}: {}",
|
|
|
|
i, candidates.len(), candidates[i].repr(self.tcx()));
|
2014-10-09 17:19:50 -04:00
|
|
|
i += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are *STILL* multiple candidates, give up and
|
2015-01-06 20:53:18 -05:00
|
|
|
// report ambiguity.
|
2014-10-09 17:19:50 -04:00
|
|
|
if candidates.len() > 1 {
|
|
|
|
debug!("multiple matches, ambig");
|
|
|
|
return Ok(None);
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-01-08 00:41:50 +01:00
|
|
|
|
2014-10-17 08:51:43 -04:00
|
|
|
// If there are *NO* candidates, that there are no impls --
|
|
|
|
// that we know of, anyway. Note that in the case where there
|
|
|
|
// are unbound type variables within the obligation, it might
|
|
|
|
// be the case that you could still satisfy the obligation
|
|
|
|
// from another crate by instantiating the type variables with
|
|
|
|
// a type from another crate that does have an impl. This case
|
2014-11-03 14:48:03 -05:00
|
|
|
// is checked for in `evaluate_stack` (and hence users
|
2014-10-17 08:51:43 -04:00
|
|
|
// who might care about this case, like coherence, should use
|
|
|
|
// that function).
|
2015-03-24 16:53:34 -07:00
|
|
|
if candidates.is_empty() {
|
2014-10-17 08:51:43 -04:00
|
|
|
return Err(Unimplemented);
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
2014-10-09 17:19:50 -04:00
|
|
|
|
|
|
|
// Just one candidate left.
|
|
|
|
let candidate = candidates.pop().unwrap();
|
2015-01-08 00:41:50 +01:00
|
|
|
|
|
|
|
match candidate {
|
|
|
|
ImplCandidate(def_id) => {
|
|
|
|
match ty::trait_impl_polarity(self.tcx(), def_id) {
|
|
|
|
Some(ast::ImplPolarity::Negative) => return Err(Unimplemented),
|
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
_ => {}
|
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(Some(candidate))
|
2014-09-17 16:12:02 -04:00
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
fn is_knowable<'o>(&mut self,
|
|
|
|
stack: &TraitObligationStack<'o, 'tcx>)
|
|
|
|
-> bool
|
|
|
|
{
|
|
|
|
debug!("is_knowable(intercrate={})", self.intercrate);
|
|
|
|
|
|
|
|
if !self.intercrate {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
let obligation = &stack.obligation;
|
|
|
|
let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
|
|
|
|
|
|
|
|
// ok to skip binder because of the nature of the
|
|
|
|
// trait-ref-is-knowable check, which does not care about
|
|
|
|
// bound regions
|
|
|
|
let trait_ref = &predicate.skip_binder().trait_ref;
|
|
|
|
|
|
|
|
coherence::trait_ref_is_knowable(self.tcx(), trait_ref)
|
|
|
|
}
|
|
|
|
|
2015-02-06 19:11:50 -05:00
|
|
|
fn pick_candidate_cache(&self) -> &SelectionCache<'tcx> {
|
|
|
|
// If there are any where-clauses in scope, then we always use
|
|
|
|
// a cache local to this particular scope. Otherwise, we
|
|
|
|
// switch to a global cache. We used to try and draw
|
|
|
|
// finer-grained distinctions, but that led to a serious of
|
|
|
|
// annoying and weird bugs like #22019 and #18290. This simple
|
|
|
|
// rule seems to be pretty clearly safe and also still retains
|
|
|
|
// a very high hit rate (~95% when compiling rustc).
|
|
|
|
if !self.param_env().caller_bounds.is_empty() {
|
|
|
|
return &self.param_env().selection_cache;
|
|
|
|
}
|
2014-10-22 11:35:53 -04:00
|
|
|
|
2014-11-03 14:48:03 -05:00
|
|
|
// Avoid using the master cache during coherence and just rely
|
|
|
|
// on the local cache. This effectively disables caching
|
|
|
|
// during coherence. It is really just a simplification to
|
|
|
|
// avoid us having to fear that coherence results "pollute"
|
|
|
|
// the master cache. Since coherence executes pretty quickly,
|
|
|
|
// it's not worth going to more trouble to increase the
|
|
|
|
// hit-rate I don't think.
|
|
|
|
if self.intercrate {
|
2015-01-02 04:09:35 -05:00
|
|
|
return &self.param_env().selection_cache;
|
2014-11-03 14:48:03 -05:00
|
|
|
}
|
|
|
|
|
2014-10-22 11:35:53 -04:00
|
|
|
// Otherwise, we can use the global cache.
|
|
|
|
&self.tcx().selection_cache
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
fn check_candidate_cache(&mut self,
|
2014-12-17 14:16:28 -05:00
|
|
|
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
|
|
|
|
-> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2015-02-06 19:11:50 -05:00
|
|
|
let cache = self.pick_candidate_cache();
|
2014-09-17 16:12:02 -04:00
|
|
|
let hashmap = cache.hashmap.borrow();
|
2015-02-13 07:33:44 +00:00
|
|
|
hashmap.get(&cache_fresh_trait_pred.0.trait_ref).cloned()
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
fn insert_candidate_cache(&mut self,
|
2014-12-17 14:16:28 -05:00
|
|
|
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
|
|
|
|
candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2015-02-06 19:11:50 -05:00
|
|
|
let cache = self.pick_candidate_cache();
|
2014-09-17 16:12:02 -04:00
|
|
|
let mut hashmap = cache.hashmap.borrow_mut();
|
2014-12-17 14:16:28 -05:00
|
|
|
hashmap.insert(cache_fresh_trait_pred.0.trait_ref.clone(), candidate);
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2015-01-21 17:45:52 -05:00
|
|
|
fn should_update_candidate_cache(&mut self,
|
|
|
|
cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
|
|
|
|
candidate: &SelectionResult<'tcx, SelectionCandidate<'tcx>>)
|
|
|
|
-> bool
|
|
|
|
{
|
|
|
|
// In general, it's a good idea to cache results, even
|
2015-02-04 23:00:02 -05:00
|
|
|
// ambiguous ones, to save us some trouble later. But we have
|
2015-01-21 17:45:52 -05:00
|
|
|
// to be careful not to cache results that could be
|
|
|
|
// invalidated later by advances in inference. Normally, this
|
|
|
|
// is not an issue, because any inference variables whose
|
|
|
|
// types are not yet bound are "freshened" in the cache key,
|
|
|
|
// which means that if we later get the same request once that
|
|
|
|
// type variable IS bound, we'll have a different cache key.
|
|
|
|
// For example, if we have `Vec<_#0t> : Foo`, and `_#0t` is
|
|
|
|
// not yet known, we may cache the result as `None`. But if
|
|
|
|
// later `_#0t` is bound to `Bar`, then when we freshen we'll
|
|
|
|
// have `Vec<Bar> : Foo` as the cache key.
|
|
|
|
//
|
|
|
|
// HOWEVER, it CAN happen that we get an ambiguity result in
|
|
|
|
// one particular case around closures where the cache key
|
|
|
|
// would not change. That is when the precise types of the
|
|
|
|
// upvars that a closure references have not yet been figured
|
|
|
|
// out (i.e., because it is not yet known if they are captured
|
|
|
|
// by ref, and if by ref, what kind of ref). In these cases,
|
|
|
|
// when matching a builtin bound, we will yield back an
|
|
|
|
// ambiguous result. But the *cache key* is just the closure type,
|
|
|
|
// it doesn't capture the state of the upvar computation.
|
|
|
|
//
|
|
|
|
// To avoid this trap, just don't cache ambiguous results if
|
|
|
|
// the self-type contains no inference byproducts (that really
|
|
|
|
// shouldn't happen in other circumstances anyway, given
|
|
|
|
// coherence).
|
|
|
|
|
|
|
|
match *candidate {
|
|
|
|
Ok(Some(_)) | Err(_) => true,
|
|
|
|
Ok(None) => {
|
|
|
|
cache_fresh_trait_pred.0.input_types().iter().any(|&t| ty::type_has_ty_infer(t))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn assemble_candidates<'o>(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
stack: &TraitObligationStack<'o, 'tcx>)
|
2014-12-17 14:16:28 -05:00
|
|
|
-> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2014-12-05 00:03:03 -05:00
|
|
|
let TraitObligationStack { obligation, .. } = *stack;
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2014-12-17 14:16:28 -05:00
|
|
|
let mut candidates = SelectionCandidateSet {
|
2014-10-09 17:19:50 -04:00
|
|
|
vec: Vec::new(),
|
|
|
|
ambiguous: false
|
|
|
|
};
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
// Other bounds. Consider both in-scope bounds from fn decl
|
|
|
|
// and applicable impls. There is a certain set of precedence rules here.
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-12-17 16:00:34 -05:00
|
|
|
match self.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
|
librustc: Make `Copy` opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
2014-12-05 17:01:33 -08:00
|
|
|
Some(ty::BoundCopy) => {
|
|
|
|
debug!("obligation self ty is {}",
|
2014-12-17 14:16:28 -05:00
|
|
|
obligation.predicate.0.self_ty().repr(self.tcx()));
|
2014-12-08 13:21:35 -05:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
// User-defined copy impls are permitted, but only for
|
|
|
|
// structs and enums.
|
2015-01-08 00:41:50 +01:00
|
|
|
try!(self.assemble_candidates_from_impls(obligation, &mut candidates));
|
2014-12-08 13:21:35 -05:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
// For other types, we'll use the builtin rules.
|
librustc: Make `Copy` opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
2014-12-05 17:01:33 -08:00
|
|
|
try!(self.assemble_builtin_bound_candidates(ty::BoundCopy,
|
|
|
|
stack,
|
|
|
|
&mut candidates));
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
2014-12-06 11:39:25 -05:00
|
|
|
Some(bound @ ty::BoundSized) => {
|
2015-02-18 11:58:44 -05:00
|
|
|
// Sized is never implementable by end-users, it is
|
|
|
|
// always automatically computed.
|
2014-12-06 11:39:25 -05:00
|
|
|
try!(self.assemble_builtin_bound_candidates(bound, stack, &mut candidates));
|
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-04-15 11:57:29 +12:00
|
|
|
None if self.tcx().lang_items.unsize_trait() ==
|
|
|
|
Some(obligation.predicate.def_id()) => {
|
|
|
|
self.assemble_candidates_for_unsizing(obligation, &mut candidates);
|
|
|
|
}
|
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
Some(ty::BoundSend) |
|
|
|
|
Some(ty::BoundSync) |
|
2014-10-09 17:19:50 -04:00
|
|
|
None => {
|
2015-01-24 22:00:03 +02:00
|
|
|
try!(self.assemble_closure_candidates(obligation, &mut candidates));
|
2014-12-01 09:23:40 -05:00
|
|
|
try!(self.assemble_fn_pointer_candidates(obligation, &mut candidates));
|
2015-01-08 00:41:50 +01:00
|
|
|
try!(self.assemble_candidates_from_impls(obligation, &mut candidates));
|
2014-12-23 05:26:34 -05:00
|
|
|
self.assemble_candidates_from_object_ty(obligation, &mut candidates);
|
librustc: Make `Copy` opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
2014-12-05 17:01:33 -08:00
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2014-12-27 04:22:29 -05:00
|
|
|
self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
|
2015-01-08 21:41:42 -05:00
|
|
|
try!(self.assemble_candidates_from_caller_bounds(stack, &mut candidates));
|
2015-02-20 15:46:50 +01:00
|
|
|
// Default implementations have lower priority, so we only
|
|
|
|
// consider triggering a default if there is no other impl that can apply.
|
2015-03-24 16:53:34 -07:00
|
|
|
if candidates.vec.is_empty() {
|
2015-02-20 15:46:50 +01:00
|
|
|
try!(self.assemble_candidates_from_default_impls(obligation, &mut candidates));
|
|
|
|
}
|
librustc: Make `Copy` opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
2014-12-05 17:01:33 -08:00
|
|
|
debug!("candidate list size: {}", candidates.vec.len());
|
2014-09-12 10:53:35 -04:00
|
|
|
Ok(candidates)
|
|
|
|
}
|
|
|
|
|
2014-12-27 04:22:29 -05:00
|
|
|
fn assemble_candidates_from_projected_tys(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
|
|
|
{
|
|
|
|
let poly_trait_predicate =
|
|
|
|
self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
|
|
|
|
|
|
|
|
debug!("assemble_candidates_for_projected_tys({},{})",
|
|
|
|
obligation.repr(self.tcx()),
|
|
|
|
poly_trait_predicate.repr(self.tcx()));
|
|
|
|
|
|
|
|
// FIXME(#20297) -- just examining the self-type is very simplistic
|
|
|
|
|
|
|
|
// before we go into the whole skolemization thing, just
|
|
|
|
// quickly check if the self-type is a projection at all.
|
|
|
|
let trait_def_id = match poly_trait_predicate.0.trait_ref.self_ty().sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyProjection(ref data) => data.trait_ref.def_id,
|
|
|
|
ty::TyInfer(ty::TyVar(_)) => {
|
2014-12-29 11:22:16 -05:00
|
|
|
// If the self-type is an inference variable, then it MAY wind up
|
|
|
|
// being a projected type, so induce an ambiguity.
|
|
|
|
//
|
|
|
|
// FIXME(#20297) -- being strict about this can cause
|
|
|
|
// inference failures with BorrowFrom, which is
|
|
|
|
// unfortunate. Can we do better here?
|
2015-01-21 17:45:52 -05:00
|
|
|
debug!("assemble_candidates_for_projected_tys: ambiguous self-type");
|
2014-12-29 11:22:16 -05:00
|
|
|
candidates.ambiguous = true;
|
2014-12-27 04:22:29 -05:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
_ => { return; }
|
|
|
|
};
|
|
|
|
|
|
|
|
debug!("assemble_candidates_for_projected_tys: trait_def_id={}",
|
|
|
|
trait_def_id.repr(self.tcx()));
|
|
|
|
|
|
|
|
let result = self.infcx.probe(|snapshot| {
|
|
|
|
self.match_projection_obligation_against_bounds_from_trait(obligation,
|
|
|
|
snapshot)
|
|
|
|
});
|
|
|
|
|
|
|
|
if result {
|
|
|
|
candidates.vec.push(ProjectionCandidate);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn match_projection_obligation_against_bounds_from_trait(
|
|
|
|
&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
snapshot: &infer::CombinedSnapshot)
|
|
|
|
-> bool
|
|
|
|
{
|
|
|
|
let poly_trait_predicate =
|
|
|
|
self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
|
|
|
|
let (skol_trait_predicate, skol_map) =
|
|
|
|
self.infcx().skolemize_late_bound_regions(&poly_trait_predicate, snapshot);
|
|
|
|
debug!("match_projection_obligation_against_bounds_from_trait: \
|
|
|
|
skol_trait_predicate={} skol_map={}",
|
|
|
|
skol_trait_predicate.repr(self.tcx()),
|
|
|
|
skol_map.repr(self.tcx()));
|
|
|
|
|
|
|
|
let projection_trait_ref = match skol_trait_predicate.trait_ref.self_ty().sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyProjection(ref data) => &data.trait_ref,
|
2014-12-27 04:22:29 -05:00
|
|
|
_ => {
|
|
|
|
self.tcx().sess.span_bug(
|
|
|
|
obligation.cause.span,
|
2015-02-01 21:53:25 -05:00
|
|
|
&format!("match_projection_obligation_against_bounds_from_trait() called \
|
|
|
|
but self-ty not a projection: {}",
|
|
|
|
skol_trait_predicate.trait_ref.self_ty().repr(self.tcx())));
|
2014-12-27 04:22:29 -05:00
|
|
|
}
|
|
|
|
};
|
|
|
|
debug!("match_projection_obligation_against_bounds_from_trait: \
|
|
|
|
projection_trait_ref={}",
|
|
|
|
projection_trait_ref.repr(self.tcx()));
|
|
|
|
|
2015-02-11 10:28:52 -05:00
|
|
|
let trait_predicates = ty::lookup_predicates(self.tcx(), projection_trait_ref.def_id);
|
|
|
|
let bounds = trait_predicates.instantiate(self.tcx(), projection_trait_ref.substs);
|
2014-12-27 04:22:29 -05:00
|
|
|
debug!("match_projection_obligation_against_bounds_from_trait: \
|
|
|
|
bounds={}",
|
|
|
|
bounds.repr(self.tcx()));
|
|
|
|
|
|
|
|
let matching_bound =
|
2015-01-05 21:50:01 -05:00
|
|
|
util::elaborate_predicates(self.tcx(), bounds.predicates.into_vec())
|
2014-12-27 04:22:29 -05:00
|
|
|
.filter_to_traits()
|
|
|
|
.find(
|
|
|
|
|bound| self.infcx.probe(
|
|
|
|
|_| self.match_projection(obligation,
|
|
|
|
bound.clone(),
|
|
|
|
skol_trait_predicate.trait_ref.clone(),
|
|
|
|
&skol_map,
|
|
|
|
snapshot)));
|
|
|
|
|
|
|
|
debug!("match_projection_obligation_against_bounds_from_trait: \
|
|
|
|
matching_bound={}",
|
|
|
|
matching_bound.repr(self.tcx()));
|
|
|
|
match matching_bound {
|
|
|
|
None => false,
|
|
|
|
Some(bound) => {
|
|
|
|
// Repeat the successful match, if any, this time outside of a probe.
|
|
|
|
let result = self.match_projection(obligation,
|
|
|
|
bound,
|
|
|
|
skol_trait_predicate.trait_ref.clone(),
|
|
|
|
&skol_map,
|
|
|
|
snapshot);
|
|
|
|
assert!(result);
|
|
|
|
true
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn match_projection(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
trait_bound: ty::PolyTraitRef<'tcx>,
|
2015-04-21 18:59:58 +03:00
|
|
|
skol_trait_ref: ty::TraitRef<'tcx>,
|
2014-12-27 04:22:29 -05:00
|
|
|
skol_map: &infer::SkolemizationMap,
|
|
|
|
snapshot: &infer::CombinedSnapshot)
|
|
|
|
-> bool
|
|
|
|
{
|
|
|
|
assert!(!skol_trait_ref.has_escaping_regions());
|
|
|
|
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
|
|
|
|
match self.infcx.sub_poly_trait_refs(false,
|
|
|
|
origin,
|
|
|
|
trait_bound.clone(),
|
|
|
|
ty::Binder(skol_trait_ref.clone())) {
|
|
|
|
Ok(()) => { }
|
|
|
|
Err(_) => { return false; }
|
|
|
|
}
|
|
|
|
|
|
|
|
self.infcx.leak_check(skol_map, snapshot).is_ok()
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
|
|
|
|
/// supplied to find out whether it is listed among them.
|
|
|
|
///
|
|
|
|
/// Never affects inference environment.
|
2015-01-08 21:41:42 -05:00
|
|
|
fn assemble_candidates_from_caller_bounds<'o>(&mut self,
|
|
|
|
stack: &TraitObligationStack<'o, 'tcx>,
|
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
|
|
|
-> Result<(),SelectionError<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2014-10-09 17:19:50 -04:00
|
|
|
debug!("assemble_candidates_from_caller_bounds({})",
|
2015-01-08 21:41:42 -05:00
|
|
|
stack.obligation.repr(self.tcx()));
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-12-11 13:37:37 -05:00
|
|
|
let caller_trait_refs: Vec<_> =
|
2015-01-26 16:37:45 -05:00
|
|
|
self.param_env().caller_bounds.iter()
|
2014-12-17 14:16:28 -05:00
|
|
|
.filter_map(|o| o.to_opt_poly_trait_ref())
|
2014-10-09 17:19:50 -04:00
|
|
|
.collect();
|
|
|
|
|
|
|
|
let all_bounds =
|
|
|
|
util::transitive_bounds(
|
2015-02-18 14:48:57 -05:00
|
|
|
self.tcx(), &caller_trait_refs[..]);
|
2014-10-09 17:19:50 -04:00
|
|
|
|
|
|
|
let matching_bounds =
|
|
|
|
all_bounds.filter(
|
2015-01-08 21:41:42 -05:00
|
|
|
|bound| self.evaluate_where_clause(stack, bound.clone()).may_apply());
|
2014-10-09 17:19:50 -04:00
|
|
|
|
|
|
|
let param_candidates =
|
2014-12-27 04:22:29 -05:00
|
|
|
matching_bounds.map(|bound| ParamCandidate(bound));
|
2014-10-09 17:19:50 -04:00
|
|
|
|
|
|
|
candidates.vec.extend(param_candidates);
|
2014-09-12 10:53:35 -04:00
|
|
|
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
2015-01-08 21:41:42 -05:00
|
|
|
fn evaluate_where_clause<'o>(&mut self,
|
|
|
|
stack: &TraitObligationStack<'o, 'tcx>,
|
|
|
|
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
|
|
|
|
-> EvaluationResult<'tcx>
|
|
|
|
{
|
|
|
|
self.infcx().probe(move |_| {
|
|
|
|
match self.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
|
|
|
|
Ok(obligations) => {
|
2015-03-30 17:46:34 -04:00
|
|
|
self.evaluate_predicates_recursively(stack.list(), obligations.iter())
|
2015-01-08 21:41:42 -05:00
|
|
|
}
|
|
|
|
Err(()) => {
|
|
|
|
EvaluatedToErr(Unimplemented)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Check for the artificial impl that the compiler will create for an obligation like `X :
|
2015-01-24 22:15:08 +02:00
|
|
|
/// FnMut<..>` where `X` is a closure type.
|
2014-11-25 21:17:11 -05:00
|
|
|
///
|
2015-01-24 22:15:08 +02:00
|
|
|
/// Note: the type parameters on a closure candidate are modeled as *output* type
|
2014-11-25 21:17:11 -05:00
|
|
|
/// parameters and hence do not affect whether this trait is a match or not. They will be
|
|
|
|
/// unified during the confirmation step.
|
2015-01-24 22:00:03 +02:00
|
|
|
fn assemble_closure_candidates(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
|
|
|
-> Result<(),SelectionError<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2015-02-02 11:52:08 -05:00
|
|
|
let kind = match self.tcx().lang_items.fn_trait_kind(obligation.predicate.0.def_id()) {
|
2014-12-01 09:23:40 -05:00
|
|
|
Some(k) => k,
|
|
|
|
None => { return Ok(()); }
|
2014-10-13 19:54:01 -04:00
|
|
|
};
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// ok to skip binder because the substs on closure types never
|
|
|
|
// touch bound regions, they just capture the in-scope
|
|
|
|
// type/region parameters
|
|
|
|
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
|
2014-10-31 10:51:16 +02:00
|
|
|
let (closure_def_id, substs) = match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyClosure(id, substs) => (id, substs),
|
|
|
|
ty::TyInfer(ty::TyVar(_)) => {
|
2015-01-21 17:45:52 -05:00
|
|
|
debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
|
2014-10-09 17:19:50 -04:00
|
|
|
candidates.ambiguous = true;
|
|
|
|
return Ok(());
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
_ => { return Ok(()); }
|
|
|
|
};
|
|
|
|
|
2014-12-20 00:09:35 -08:00
|
|
|
debug!("assemble_unboxed_candidates: self_ty={} kind={:?} obligation={}",
|
2014-10-09 17:19:50 -04:00
|
|
|
self_ty.repr(self.tcx()),
|
2014-11-26 10:07:22 -05:00
|
|
|
kind,
|
2014-10-09 17:19:50 -04:00
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
2015-01-26 06:22:06 -05:00
|
|
|
match self.closure_typer.closure_kind(closure_def_id) {
|
|
|
|
Some(closure_kind) => {
|
|
|
|
debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
|
2015-02-15 15:09:26 -05:00
|
|
|
if closure_kind.extends(kind) {
|
2015-06-03 02:14:45 +03:00
|
|
|
candidates.vec.push(ClosureCandidate(closure_def_id,
|
|
|
|
substs.clone()));
|
2015-01-26 06:22:06 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
None => {
|
|
|
|
debug!("assemble_unboxed_candidates: closure_kind not yet known");
|
|
|
|
candidates.ambiguous = true;
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
2014-12-01 09:23:40 -05:00
|
|
|
/// Implement one of the `Fn()` family for a fn pointer.
|
|
|
|
fn assemble_fn_pointer_candidates(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2014-12-17 14:16:28 -05:00
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
2014-12-01 09:23:40 -05:00
|
|
|
-> Result<(),SelectionError<'tcx>>
|
|
|
|
{
|
2015-02-15 15:09:26 -05:00
|
|
|
// We provide impl of all fn traits for fn pointers.
|
|
|
|
if self.tcx().lang_items.fn_trait_kind(obligation.predicate.def_id()).is_none() {
|
2014-12-01 09:23:40 -05:00
|
|
|
return Ok(());
|
|
|
|
}
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// ok to skip binder because what we are inspecting doesn't involve bound regions
|
|
|
|
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
|
2014-12-01 09:23:40 -05:00
|
|
|
match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyInfer(ty::TyVar(_)) => {
|
2015-01-21 17:45:52 -05:00
|
|
|
debug!("assemble_fn_pointer_candidates: ambiguous self-type");
|
2014-12-01 09:23:40 -05:00
|
|
|
candidates.ambiguous = true; // could wind up being a fn() type
|
|
|
|
}
|
|
|
|
|
|
|
|
// provide an impl, but only for suitable `fn` pointers
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyBareFn(_, &ty::BareFnTy {
|
2014-12-09 10:36:46 -05:00
|
|
|
unsafety: ast::Unsafety::Normal,
|
2014-12-01 09:23:40 -05:00
|
|
|
abi: abi::Rust,
|
2014-12-12 11:28:35 -05:00
|
|
|
sig: ty::Binder(ty::FnSig {
|
2014-12-01 09:23:40 -05:00
|
|
|
inputs: _,
|
|
|
|
output: ty::FnConverging(_),
|
|
|
|
variadic: false
|
2014-12-12 11:28:35 -05:00
|
|
|
})
|
2014-12-01 09:23:40 -05:00
|
|
|
}) => {
|
|
|
|
candidates.vec.push(FnPointerCandidate);
|
|
|
|
}
|
|
|
|
|
|
|
|
_ => { }
|
|
|
|
}
|
|
|
|
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Search for impls that might apply to `obligation`.
|
2014-09-18 11:08:04 -04:00
|
|
|
fn assemble_candidates_from_impls(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2015-01-08 00:41:50 +01:00
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
2014-09-29 22:11:30 +03:00
|
|
|
-> Result<(), SelectionError<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2015-03-26 15:53:00 -04:00
|
|
|
debug!("assemble_candidates_from_impls(obligation={})", obligation.repr(self.tcx()));
|
2015-01-08 00:41:50 +01:00
|
|
|
|
2015-04-21 19:00:12 +03:00
|
|
|
let def = ty::lookup_trait_def(self.tcx(), obligation.predicate.def_id());
|
|
|
|
|
|
|
|
def.for_each_relevant_impl(
|
|
|
|
self.tcx(),
|
2015-04-30 20:35:10 +03:00
|
|
|
obligation.predicate.0.trait_ref.self_ty(),
|
2015-04-21 19:00:12 +03:00
|
|
|
|impl_def_id| {
|
|
|
|
self.infcx.probe(|snapshot| {
|
|
|
|
if let Ok(_) = self.match_impl(impl_def_id, obligation, snapshot) {
|
2015-01-08 00:41:50 +01:00
|
|
|
candidates.vec.push(ImplCandidate(impl_def_id));
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
2015-04-21 19:00:12 +03:00
|
|
|
});
|
|
|
|
}
|
|
|
|
);
|
2015-01-24 14:17:24 +01:00
|
|
|
|
2015-02-20 15:46:50 +01:00
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
|
|
|
fn assemble_candidates_from_default_impls(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
|
|
|
-> Result<(), SelectionError<'tcx>>
|
|
|
|
{
|
2015-03-26 15:53:00 -04:00
|
|
|
// OK to skip binder here because the tests we do below do not involve bound regions
|
|
|
|
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
|
2015-02-20 15:46:50 +01:00
|
|
|
debug!("assemble_candidates_from_default_impls(self_ty={})", self_ty.repr(self.tcx()));
|
|
|
|
|
|
|
|
let def_id = obligation.predicate.def_id();
|
|
|
|
|
2015-02-20 05:16:59 -05:00
|
|
|
if ty::trait_has_default_impl(self.tcx(), def_id) {
|
|
|
|
match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTrait(..) => {
|
2015-03-24 15:55:29 -04:00
|
|
|
// For object types, we don't know what the closed
|
|
|
|
// over types are. For most traits, this means we
|
|
|
|
// conservatively say nothing; a candidate may be
|
|
|
|
// added by `assemble_candidates_from_object_ty`.
|
|
|
|
// However, for the kind of magic reflect trait,
|
|
|
|
// we consider it to be implemented even for
|
|
|
|
// object types, because it just lets you reflect
|
|
|
|
// onto the object type, not into the object's
|
|
|
|
// interior.
|
|
|
|
if ty::has_attr(self.tcx(), def_id, "rustc_reflect_like") {
|
|
|
|
candidates.vec.push(DefaultImplObjectCandidate(def_id));
|
|
|
|
}
|
|
|
|
}
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyParam(..) |
|
|
|
|
ty::TyProjection(..) => {
|
2015-02-20 05:16:59 -05:00
|
|
|
// In these cases, we don't know what the actual
|
|
|
|
// type is. Therefore, we cannot break it down
|
|
|
|
// into its constituent types. So we don't
|
|
|
|
// consider the `..` impl but instead just add no
|
|
|
|
// candidates: this means that typeck will only
|
|
|
|
// succeed if there is another reason to believe
|
|
|
|
// that this obligation holds. That could be a
|
|
|
|
// where-clause or, in the case of an object type,
|
|
|
|
// it could be that the object type lists the
|
|
|
|
// trait (e.g. `Foo+Send : Send`). See
|
|
|
|
// `compile-fail/typeck-default-trait-impl-send-param.rs`
|
|
|
|
// for an example of a test case that exercises
|
|
|
|
// this path.
|
|
|
|
}
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyInfer(ty::TyVar(_)) => {
|
2015-02-20 05:16:59 -05:00
|
|
|
// the defaulted impl might apply, we don't know
|
2015-02-19 11:28:01 -05:00
|
|
|
candidates.ambiguous = true;
|
|
|
|
}
|
2015-02-20 05:16:59 -05:00
|
|
|
_ => {
|
|
|
|
if self.constituent_types_for_ty(self_ty).is_some() {
|
|
|
|
candidates.vec.push(DefaultImplCandidate(def_id.clone()))
|
|
|
|
} else {
|
|
|
|
// We don't yet know what the constituent
|
|
|
|
// types are. So call it ambiguous for now,
|
|
|
|
// though this is a bit stronger than
|
|
|
|
// necessary: that is, we know that the
|
|
|
|
// defaulted impl applies, but we can't
|
|
|
|
// process the confirmation step without
|
|
|
|
// knowing the constituent types. (Anyway, in
|
|
|
|
// the particular case of defaulted impls, it
|
|
|
|
// doesn't really matter much either way,
|
|
|
|
// since we won't be aiding inference by
|
|
|
|
// processing the confirmation step.)
|
|
|
|
candidates.ambiguous = true;
|
2015-02-19 21:13:55 +01:00
|
|
|
}
|
2015-02-18 01:49:16 +01:00
|
|
|
}
|
|
|
|
}
|
2015-01-24 14:17:24 +01:00
|
|
|
}
|
|
|
|
|
2014-09-12 10:53:35 -04:00
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
2014-12-23 05:26:34 -05:00
|
|
|
/// Search for impls that might apply to `obligation`.
|
|
|
|
fn assemble_candidates_from_object_ty(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
|
|
|
{
|
|
|
|
debug!("assemble_candidates_from_object_ty(self_ty={})",
|
2015-03-26 15:53:00 -04:00
|
|
|
self.infcx.shallow_resolve(*obligation.self_ty().skip_binder()).repr(self.tcx()));
|
2014-12-23 05:26:34 -05:00
|
|
|
|
|
|
|
// Object-safety candidates are only applicable to object-safe
|
|
|
|
// traits. Including this check is useful because it helps
|
|
|
|
// inference in cases of traits like `BorrowFrom`, which are
|
|
|
|
// not object-safe, and which rely on being able to infer the
|
|
|
|
// self-type from one of the other inputs. Without this check,
|
|
|
|
// these cases wind up being considered ambiguous due to a
|
|
|
|
// (spurious) ambiguity introduced here.
|
2015-03-26 15:51:11 -04:00
|
|
|
let predicate_trait_ref = obligation.predicate.to_poly_trait_ref();
|
|
|
|
if !object_safety::is_object_safe(self.tcx(), predicate_trait_ref.def_id()) {
|
2014-12-23 05:26:34 -05:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2015-03-10 07:02:27 -04:00
|
|
|
self.infcx.commit_if_ok(|snapshot| {
|
2015-03-26 15:53:00 -04:00
|
|
|
let bound_self_ty =
|
|
|
|
self.infcx.resolve_type_vars_if_possible(&obligation.self_ty());
|
|
|
|
let (self_ty, _) =
|
|
|
|
self.infcx().skolemize_late_bound_regions(&bound_self_ty, snapshot);
|
|
|
|
let poly_trait_ref = match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTrait(ref data) => {
|
2015-03-26 15:53:00 -04:00
|
|
|
match self.tcx().lang_items.to_builtin_kind(obligation.predicate.def_id()) {
|
|
|
|
Some(bound @ ty::BoundSend) | Some(bound @ ty::BoundSync) => {
|
|
|
|
if data.bounds.builtin_bounds.contains(&bound) {
|
|
|
|
debug!("assemble_candidates_from_object_ty: matched builtin bound, \
|
|
|
|
pushing candidate");
|
|
|
|
candidates.vec.push(BuiltinObjectCandidate);
|
|
|
|
return Ok(());
|
|
|
|
}
|
2015-02-18 01:49:16 +01:00
|
|
|
}
|
2015-03-26 15:53:00 -04:00
|
|
|
_ => {}
|
2015-02-18 01:49:16 +01:00
|
|
|
}
|
2015-03-26 15:53:00 -04:00
|
|
|
|
|
|
|
data.principal_trait_ref_with_self_ty(self.tcx(), self_ty)
|
|
|
|
}
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyInfer(ty::TyVar(_)) => {
|
2015-03-26 15:53:00 -04:00
|
|
|
debug!("assemble_candidates_from_object_ty: ambiguous");
|
|
|
|
candidates.ambiguous = true; // could wind up being an object type
|
|
|
|
return Ok(());
|
2015-02-18 01:49:16 +01:00
|
|
|
}
|
2015-03-26 15:53:00 -04:00
|
|
|
_ => {
|
|
|
|
return Ok(());
|
|
|
|
}
|
|
|
|
};
|
2015-02-18 01:49:16 +01:00
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
debug!("assemble_candidates_from_object_ty: poly_trait_ref={}",
|
|
|
|
poly_trait_ref.repr(self.tcx()));
|
2014-12-23 05:26:34 -05:00
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// see whether the object trait can be upcast to the trait we are looking for
|
|
|
|
let upcast_trait_refs = self.upcast(poly_trait_ref, obligation);
|
|
|
|
if upcast_trait_refs.len() > 1 {
|
|
|
|
// can be upcast in many ways; need more type information
|
|
|
|
candidates.ambiguous = true;
|
|
|
|
} else if upcast_trait_refs.len() == 1 {
|
|
|
|
candidates.vec.push(ObjectCandidate);
|
|
|
|
}
|
2014-12-23 05:26:34 -05:00
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
Ok::<(),()>(())
|
|
|
|
}).unwrap();
|
2014-12-23 05:26:34 -05:00
|
|
|
}
|
|
|
|
|
2015-04-15 11:57:29 +12:00
|
|
|
/// Search for unsizing that might apply to `obligation`.
|
|
|
|
fn assemble_candidates_for_unsizing(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>) {
|
2015-05-13 14:57:47 +12:00
|
|
|
// We currently never consider higher-ranked obligations e.g.
|
|
|
|
// `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
|
|
|
|
// because they are a priori invalid, and we could potentially add support
|
|
|
|
// for them later, it's just that there isn't really a strong need for it.
|
|
|
|
// A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
|
|
|
|
// impl, and those are generally applied to concrete types.
|
|
|
|
//
|
|
|
|
// That said, one might try to write a fn with a where clause like
|
|
|
|
// for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
|
|
|
|
// where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
|
|
|
|
// Still, you'd be more likely to write that where clause as
|
|
|
|
// T: Trait
|
|
|
|
// so it seems ok if we (conservatively) fail to accept that `Unsize`
|
|
|
|
// obligation above. Should be possible to extend this in the future.
|
|
|
|
let self_ty = match ty::no_late_bound_regions(self.tcx(), &obligation.self_ty()) {
|
|
|
|
Some(t) => t,
|
|
|
|
None => {
|
|
|
|
// Don't add any candidates if there are bound regions.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
let source = self.infcx.shallow_resolve(self_ty);
|
2015-04-15 11:57:29 +12:00
|
|
|
let target = self.infcx.shallow_resolve(obligation.predicate.0.input_types()[0]);
|
|
|
|
|
|
|
|
debug!("assemble_candidates_for_unsizing(source={}, target={})",
|
|
|
|
source.repr(self.tcx()), target.repr(self.tcx()));
|
|
|
|
|
|
|
|
let may_apply = match (&source.sty, &target.sty) {
|
|
|
|
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
|
2015-06-11 16:21:46 -07:00
|
|
|
(&ty::TyTrait(ref data_a), &ty::TyTrait(ref data_b)) => {
|
2015-04-15 11:57:29 +12:00
|
|
|
// Upcasts permit two things:
|
|
|
|
//
|
|
|
|
// 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
|
|
|
|
// 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
|
|
|
|
//
|
|
|
|
// Note that neither of these changes requires any
|
|
|
|
// change at runtime. Eventually this will be
|
|
|
|
// generalized.
|
|
|
|
//
|
|
|
|
// We always upcast when we can because of reason
|
|
|
|
// #2 (region bounds).
|
|
|
|
data_a.principal.def_id() == data_a.principal.def_id() &&
|
|
|
|
data_a.bounds.builtin_bounds.is_superset(&data_b.bounds.builtin_bounds)
|
|
|
|
}
|
|
|
|
|
|
|
|
// T -> Trait.
|
2015-06-11 16:21:46 -07:00
|
|
|
(_, &ty::TyTrait(_)) => true,
|
2015-04-15 11:57:29 +12:00
|
|
|
|
|
|
|
// Ambiguous handling is below T -> Trait, because inference
|
|
|
|
// variables can still implement Unsize<Trait> and nested
|
|
|
|
// obligations will have the final say (likely deferred).
|
2015-06-11 16:21:46 -07:00
|
|
|
(&ty::TyInfer(ty::TyVar(_)), _) |
|
|
|
|
(_, &ty::TyInfer(ty::TyVar(_))) => {
|
2015-04-15 11:57:29 +12:00
|
|
|
debug!("assemble_candidates_for_unsizing: ambiguous");
|
|
|
|
candidates.ambiguous = true;
|
|
|
|
false
|
|
|
|
}
|
|
|
|
|
|
|
|
// [T; n] -> [T].
|
2015-06-12 16:50:13 -07:00
|
|
|
(&ty::TyArray(_, _), &ty::TySlice(_)) => true,
|
2015-04-15 11:57:29 +12:00
|
|
|
|
|
|
|
// Struct<T> -> Struct<U>.
|
2015-06-11 16:21:46 -07:00
|
|
|
(&ty::TyStruct(def_id_a, _), &ty::TyStruct(def_id_b, _)) => {
|
2015-04-15 11:57:29 +12:00
|
|
|
def_id_a == def_id_b
|
|
|
|
}
|
|
|
|
|
|
|
|
_ => false
|
|
|
|
};
|
|
|
|
|
|
|
|
if may_apply {
|
|
|
|
candidates.vec.push(BuiltinUnsizeCandidate);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// WINNOW
|
|
|
|
//
|
|
|
|
// Winnowing is the process of attempting to resolve ambiguity by
|
|
|
|
// probing further. During the winnowing process, we unify all
|
|
|
|
// type variables (ignoring skolemization) and then we also
|
|
|
|
// attempt to evaluate recursive bounds to see if they are
|
|
|
|
// satisfied.
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Further evaluate `candidate` to decide whether all type parameters match and whether nested
|
|
|
|
/// obligations are met. Returns true if `candidate` remains viable after this further
|
|
|
|
/// scrutiny.
|
2014-09-29 22:11:30 +03:00
|
|
|
fn winnow_candidate<'o>(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
stack: &TraitObligationStack<'o, 'tcx>,
|
2014-12-17 14:16:28 -05:00
|
|
|
candidate: &SelectionCandidate<'tcx>)
|
2014-12-02 14:04:10 -05:00
|
|
|
-> EvaluationResult<'tcx>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2014-12-14 07:17:23 -05:00
|
|
|
debug!("winnow_candidate: candidate={}", candidate.repr(self.tcx()));
|
|
|
|
let result = self.infcx.probe(|_| {
|
2014-10-09 17:19:50 -04:00
|
|
|
let candidate = (*candidate).clone();
|
|
|
|
match self.confirm_candidate(stack.obligation, candidate) {
|
2015-03-30 17:46:34 -04:00
|
|
|
Ok(selection) => self.winnow_selection(stack.list(),
|
|
|
|
selection),
|
2014-12-02 14:04:10 -05:00
|
|
|
Err(error) => EvaluatedToErr(error),
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
2014-11-26 10:07:22 -05:00
|
|
|
});
|
2014-12-20 00:09:35 -08:00
|
|
|
debug!("winnow_candidate depth={} result={:?}",
|
2014-11-26 10:07:22 -05:00
|
|
|
stack.obligation.recursion_depth, result);
|
|
|
|
result
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn winnow_selection<'o>(&mut self,
|
2015-03-30 17:46:34 -04:00
|
|
|
stack: TraitObligationStackList<'o,'tcx>,
|
2014-09-29 22:11:30 +03:00
|
|
|
selection: Selection<'tcx>)
|
2014-12-02 14:04:10 -05:00
|
|
|
-> EvaluationResult<'tcx>
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2015-06-03 02:14:45 +03:00
|
|
|
self.evaluate_predicates_recursively(stack,
|
|
|
|
selection.nested_obligations().iter())
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-02-16 06:57:38 -05:00
|
|
|
/// Returns true if `candidate_i` should be dropped in favor of
|
|
|
|
/// `candidate_j`. Generally speaking we will drop duplicate
|
|
|
|
/// candidates and prefer where-clause candidates.
|
2015-05-07 22:21:57 +03:00
|
|
|
/// Returns true if `victim` should be dropped in favor of
|
|
|
|
/// `other`. Generally speaking we will drop duplicate
|
|
|
|
/// candidates and prefer where-clause candidates.
|
|
|
|
///
|
|
|
|
/// See the comment for "SelectionCandidate" for more details.
|
2014-09-29 22:11:30 +03:00
|
|
|
fn candidate_should_be_dropped_in_favor_of<'o>(&mut self,
|
2015-05-07 22:21:57 +03:00
|
|
|
victim: &SelectionCandidate<'tcx>,
|
|
|
|
other: &SelectionCandidate<'tcx>)
|
2014-09-29 22:11:30 +03:00
|
|
|
-> bool
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2015-05-07 22:21:57 +03:00
|
|
|
if victim == other {
|
2015-01-08 21:41:42 -05:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2015-05-07 22:21:57 +03:00
|
|
|
match other {
|
|
|
|
&ObjectCandidate(..) |
|
|
|
|
&ParamCandidate(_) | &ProjectionCandidate => match victim {
|
|
|
|
&DefaultImplCandidate(..) => {
|
|
|
|
self.tcx().sess.bug(
|
|
|
|
"default implementations shouldn't be recorded \
|
|
|
|
when there are other valid candidates");
|
|
|
|
}
|
|
|
|
&PhantomFnCandidate => {
|
|
|
|
self.tcx().sess.bug("PhantomFn didn't short-circuit selection");
|
|
|
|
}
|
|
|
|
&ImplCandidate(..) |
|
|
|
|
&ClosureCandidate(..) |
|
|
|
|
&FnPointerCandidate(..) |
|
|
|
|
&BuiltinObjectCandidate(..) |
|
2015-05-12 14:41:08 +12:00
|
|
|
&BuiltinUnsizeCandidate(..) |
|
2015-05-07 22:21:57 +03:00
|
|
|
&DefaultImplObjectCandidate(..) |
|
|
|
|
&BuiltinCandidate(..) => {
|
|
|
|
// We have a where-clause so don't go around looking
|
|
|
|
// for impls.
|
|
|
|
true
|
|
|
|
}
|
|
|
|
&ObjectCandidate(..) |
|
|
|
|
&ProjectionCandidate => {
|
|
|
|
// Arbitrarily give param candidates priority
|
|
|
|
// over projection and object candidates.
|
|
|
|
true
|
|
|
|
},
|
|
|
|
&ParamCandidate(..) => false,
|
|
|
|
&ErrorCandidate => false // propagate errors
|
|
|
|
},
|
|
|
|
_ => false
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// BUILTIN BOUNDS
|
|
|
|
//
|
|
|
|
// These cover the traits that are built-in to the language
|
|
|
|
// itself. This includes `Copy` and `Sized` for sure. For the
|
|
|
|
// moment, it also includes `Send` / `Sync` and a few others, but
|
|
|
|
// those will hopefully change to library-defined traits in the
|
|
|
|
// future.
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
fn assemble_builtin_bound_candidates<'o>(&mut self,
|
|
|
|
bound: ty::BuiltinBound,
|
2014-12-05 00:03:03 -05:00
|
|
|
stack: &TraitObligationStack<'o, 'tcx>,
|
2014-12-17 14:16:28 -05:00
|
|
|
candidates: &mut SelectionCandidateSet<'tcx>)
|
2014-09-29 22:11:30 +03:00
|
|
|
-> Result<(),SelectionError<'tcx>>
|
2014-09-18 11:08:04 -04:00
|
|
|
{
|
2014-12-07 11:10:48 -05:00
|
|
|
match self.builtin_bound(bound, stack.obligation) {
|
|
|
|
Ok(If(..)) => {
|
2014-11-07 16:14:32 -05:00
|
|
|
debug!("builtin_bound: bound={}",
|
|
|
|
bound.repr(self.tcx()));
|
|
|
|
candidates.vec.push(BuiltinCandidate(bound));
|
|
|
|
Ok(())
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(ParameterBuiltin) => { Ok(()) }
|
2015-01-21 17:45:52 -05:00
|
|
|
Ok(AmbiguousBuiltin) => {
|
|
|
|
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
|
|
|
|
Ok(candidates.ambiguous = true)
|
|
|
|
}
|
2014-10-09 17:19:50 -04:00
|
|
|
Err(e) => { Err(e) }
|
|
|
|
}
|
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
fn builtin_bound(&mut self,
|
|
|
|
bound: ty::BuiltinBound,
|
2014-12-07 11:10:48 -05:00
|
|
|
obligation: &TraitObligation<'tcx>)
|
2014-09-29 22:11:30 +03:00
|
|
|
-> Result<BuiltinBoundConditions<'tcx>,SelectionError<'tcx>>
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2014-12-28 10:07:21 -05:00
|
|
|
// Note: these tests operate on types that may contain bound
|
|
|
|
// regions. To be proper, we ought to skolemize here, but we
|
|
|
|
// forego the skolemization and defer it until the
|
|
|
|
// confirmation step.
|
|
|
|
|
2014-12-17 14:16:28 -05:00
|
|
|
let self_ty = self.infcx.shallow_resolve(obligation.predicate.0.self_ty());
|
2014-10-31 10:51:16 +02:00
|
|
|
return match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyInfer(ty::IntVar(_)) |
|
|
|
|
ty::TyInfer(ty::FloatVar(_)) |
|
|
|
|
ty::TyUint(_) |
|
|
|
|
ty::TyInt(_) |
|
|
|
|
ty::TyBool |
|
|
|
|
ty::TyFloat(_) |
|
|
|
|
ty::TyBareFn(..) |
|
|
|
|
ty::TyChar => {
|
2014-09-18 11:08:04 -04:00
|
|
|
// safe for everything
|
2015-03-26 15:53:00 -04:00
|
|
|
ok_if(Vec::new())
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyBox(_) => { // Box<T>
|
2014-09-18 11:08:04 -04:00
|
|
|
match bound {
|
2015-02-24 09:50:36 +01:00
|
|
|
ty::BoundCopy => Err(Unimplemented),
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
ty::BoundSized => ok_if(Vec::new()),
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
ty::BoundSync | ty::BoundSend => {
|
|
|
|
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyRawPtr(..) => { // *const T, *mut T
|
2014-09-18 11:08:04 -04:00
|
|
|
match bound {
|
2015-03-26 15:53:00 -04:00
|
|
|
ty::BoundCopy | ty::BoundSized => ok_if(Vec::new()),
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
ty::BoundSync | ty::BoundSend => {
|
|
|
|
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTrait(ref data) => {
|
2014-09-18 11:08:04 -04:00
|
|
|
match bound {
|
2015-02-24 09:50:36 +01:00
|
|
|
ty::BoundSized => Err(Unimplemented),
|
2015-02-18 11:58:44 -05:00
|
|
|
ty::BoundCopy => {
|
2014-12-11 13:37:37 -05:00
|
|
|
if data.bounds.builtin_bounds.contains(&bound) {
|
2015-03-26 15:53:00 -04:00
|
|
|
ok_if(Vec::new())
|
2014-10-09 17:19:50 -04:00
|
|
|
} else {
|
2014-11-16 18:20:19 +00:00
|
|
|
// Recursively check all supertraits to find out if any further
|
|
|
|
// bounds are required and thus we must fulfill.
|
2014-12-29 11:05:35 -05:00
|
|
|
let principal =
|
2014-12-25 07:20:48 -05:00
|
|
|
data.principal_trait_ref_with_self_ty(self.tcx(),
|
|
|
|
self.tcx().types.err);
|
2015-02-24 09:24:42 -05:00
|
|
|
let desired_def_id = obligation.predicate.def_id();
|
2014-12-29 11:05:35 -05:00
|
|
|
for tr in util::supertraits(self.tcx(), principal) {
|
2015-02-24 09:24:42 -05:00
|
|
|
if tr.def_id() == desired_def_id {
|
2015-03-26 15:53:00 -04:00
|
|
|
return ok_if(Vec::new())
|
2014-11-16 18:20:19 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
Err(Unimplemented)
|
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
2015-02-18 11:58:44 -05:00
|
|
|
ty::BoundSync | ty::BoundSend => {
|
|
|
|
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
|
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyRef(_, ty::mt { ty: _, mutbl }) => {
|
2014-09-18 11:08:04 -04:00
|
|
|
// &mut T or &T
|
|
|
|
match bound {
|
|
|
|
ty::BoundCopy => {
|
2014-10-09 17:19:50 -04:00
|
|
|
match mutbl {
|
|
|
|
// &mut T is affine and hence never `Copy`
|
2015-02-24 09:50:36 +01:00
|
|
|
ast::MutMutable => Err(Unimplemented),
|
2014-10-09 17:19:50 -04:00
|
|
|
|
|
|
|
// &T is always copyable
|
2015-03-26 15:53:00 -04:00
|
|
|
ast::MutImmutable => ok_if(Vec::new()),
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
ty::BoundSized => ok_if(Vec::new()),
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
ty::BoundSync | ty::BoundSend => {
|
|
|
|
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-12 16:50:13 -07:00
|
|
|
ty::TyArray(element_ty, _) => {
|
|
|
|
// [T; n]
|
2014-09-18 11:08:04 -04:00
|
|
|
match bound {
|
2015-06-12 16:50:13 -07:00
|
|
|
ty::BoundCopy => ok_if(vec![element_ty]),
|
|
|
|
ty::BoundSized => ok_if(Vec::new()),
|
2015-02-18 11:58:44 -05:00
|
|
|
ty::BoundSync | ty::BoundSend => {
|
|
|
|
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-12 16:50:13 -07:00
|
|
|
ty::TyStr | ty::TySlice(_) => {
|
2014-09-18 11:08:04 -04:00
|
|
|
match bound {
|
2015-02-18 11:58:44 -05:00
|
|
|
ty::BoundSync | ty::BoundSend => {
|
|
|
|
self.tcx().sess.bug("Send/Sync shouldn't occur in builtin_bounds()");
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-02-24 09:50:36 +01:00
|
|
|
ty::BoundCopy | ty::BoundSized => Err(Unimplemented),
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-24 09:50:36 +01:00
|
|
|
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTuple(ref tys) => ok_if(tys.clone()),
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyClosure(def_id, substs) => {
|
2014-09-18 11:08:04 -04:00
|
|
|
// FIXME -- This case is tricky. In the case of by-ref
|
|
|
|
// closures particularly, we need the results of
|
|
|
|
// inference to decide how to reflect the type of each
|
|
|
|
// upvar (the upvar may have type `T`, but the runtime
|
|
|
|
// type could be `&mut`, `&`, or just `T`). For now,
|
|
|
|
// though, we'll do this unsoundly and assume that all
|
|
|
|
// captures are by value. Really what we ought to do
|
|
|
|
// is reserve judgement and then intertwine this
|
|
|
|
// analysis with closure inference.
|
|
|
|
assert_eq!(def_id.krate, ast::LOCAL_CRATE);
|
2014-12-15 21:49:49 +01:00
|
|
|
|
|
|
|
// Unboxed closures shouldn't be
|
|
|
|
// implicitly copyable
|
|
|
|
if bound == ty::BoundCopy {
|
|
|
|
return Ok(ParameterBuiltin);
|
|
|
|
}
|
|
|
|
|
2015-01-18 19:43:35 +09:00
|
|
|
// Upvars are always local variables or references to
|
|
|
|
// local variables, and local variables cannot be
|
|
|
|
// unsized, so the closure struct as a whole must be
|
|
|
|
// Sized.
|
|
|
|
if bound == ty::BoundSized {
|
2015-03-26 15:53:00 -04:00
|
|
|
return ok_if(Vec::new());
|
2015-01-18 19:43:35 +09:00
|
|
|
}
|
|
|
|
|
2015-01-24 22:00:03 +02:00
|
|
|
match self.closure_typer.closure_upvars(def_id, substs) {
|
2015-03-26 15:53:00 -04:00
|
|
|
Some(upvars) => ok_if(upvars.iter().map(|c| c.ty).collect()),
|
2015-01-01 16:04:51 -05:00
|
|
|
None => {
|
2015-01-21 17:45:52 -05:00
|
|
|
debug!("assemble_builtin_bound_candidates: no upvar types available yet");
|
2015-01-01 16:04:51 -05:00
|
|
|
Ok(AmbiguousBuiltin)
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyStruct(def_id, substs) => {
|
2014-09-13 21:09:25 +03:00
|
|
|
let types: Vec<Ty> =
|
2015-01-01 16:04:51 -05:00
|
|
|
ty::struct_fields(self.tcx(), def_id, substs).iter()
|
|
|
|
.map(|f| f.mt.ty)
|
|
|
|
.collect();
|
2015-02-02 12:14:01 +01:00
|
|
|
nominal(bound, types)
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyEnum(def_id, substs) => {
|
2014-09-13 21:09:25 +03:00
|
|
|
let types: Vec<Ty> =
|
2014-09-18 11:08:04 -04:00
|
|
|
ty::substd_enum_variants(self.tcx(), def_id, substs)
|
|
|
|
.iter()
|
2015-06-10 17:22:20 +01:00
|
|
|
.flat_map(|variant| &variant.args)
|
2015-02-15 05:19:50 +00:00
|
|
|
.cloned()
|
2014-09-18 11:08:04 -04:00
|
|
|
.collect();
|
2015-02-02 12:14:01 +01:00
|
|
|
nominal(bound, types)
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyProjection(_) | ty::TyParam(_) => {
|
2014-09-18 11:08:04 -04:00
|
|
|
// Note: A type parameter is only considered to meet a
|
|
|
|
// particular bound if there is a where clause telling
|
|
|
|
// us that it does, and that case is handled by
|
|
|
|
// `assemble_candidates_from_caller_bounds()`.
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(ParameterBuiltin)
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyInfer(ty::TyVar(_)) => {
|
2014-10-09 17:19:50 -04:00
|
|
|
// Unbound type variable. Might or might not have
|
|
|
|
// applicable impls and so forth, depending on what
|
|
|
|
// those type variables wind up being bound to.
|
2015-01-21 17:45:52 -05:00
|
|
|
debug!("assemble_builtin_bound_candidates: ambiguous builtin");
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(AmbiguousBuiltin)
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyError => ok_if(Vec::new()),
|
2014-10-09 17:19:50 -04:00
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyInfer(ty::FreshTy(_))
|
|
|
|
| ty::TyInfer(ty::FreshIntTy(_))
|
|
|
|
| ty::TyInfer(ty::FreshFloatTy(_)) => {
|
2014-10-09 17:19:50 -04:00
|
|
|
self.tcx().sess.bug(
|
2015-01-07 11:58:31 -05:00
|
|
|
&format!(
|
2014-10-09 17:19:50 -04:00
|
|
|
"asked to assemble builtin bounds of unexpected type: {}",
|
2015-02-20 14:08:14 -05:00
|
|
|
self_ty.repr(self.tcx())));
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
fn ok_if<'tcx>(v: Vec<Ty<'tcx>>)
|
|
|
|
-> Result<BuiltinBoundConditions<'tcx>, SelectionError<'tcx>> {
|
|
|
|
Ok(If(ty::Binder(v)))
|
|
|
|
}
|
|
|
|
|
2015-02-02 12:14:01 +01:00
|
|
|
fn nominal<'cx, 'tcx>(bound: ty::BuiltinBound,
|
2014-09-29 22:11:30 +03:00
|
|
|
types: Vec<Ty<'tcx>>)
|
2015-02-24 09:50:36 +01:00
|
|
|
-> Result<BuiltinBoundConditions<'tcx>, SelectionError<'tcx>>
|
2014-09-18 11:08:04 -04:00
|
|
|
{
|
|
|
|
// First check for markers and other nonsense.
|
|
|
|
match bound {
|
2015-02-18 11:58:44 -05:00
|
|
|
// Fallback to whatever user-defined impls exist in this case.
|
|
|
|
ty::BoundCopy => Ok(ParameterBuiltin),
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
// Sized if all the component types are sized.
|
2015-03-26 15:53:00 -04:00
|
|
|
ty::BoundSized => ok_if(types),
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
// Shouldn't be coming through here.
|
|
|
|
ty::BoundSend | ty::BoundSync => unreachable!(),
|
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-20 05:16:59 -05:00
|
|
|
/// For default impls, we need to break apart a type into its
|
|
|
|
/// "constituent types" -- meaning, the types that it contains.
|
|
|
|
///
|
|
|
|
/// Here are some (simple) examples:
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// (i32, u32) -> [i32, u32]
|
|
|
|
/// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
|
|
|
|
/// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
|
|
|
|
/// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
|
|
|
|
/// ```
|
2015-02-19 21:13:55 +01:00
|
|
|
fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Option<Vec<Ty<'tcx>>> {
|
2015-02-02 12:14:01 +01:00
|
|
|
match t.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyUint(_) |
|
|
|
|
ty::TyInt(_) |
|
|
|
|
ty::TyBool |
|
|
|
|
ty::TyFloat(_) |
|
|
|
|
ty::TyBareFn(..) |
|
|
|
|
ty::TyStr |
|
|
|
|
ty::TyError |
|
|
|
|
ty::TyInfer(ty::IntVar(_)) |
|
|
|
|
ty::TyInfer(ty::FloatVar(_)) |
|
|
|
|
ty::TyChar => {
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(Vec::new())
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTrait(..) |
|
|
|
|
ty::TyParam(..) |
|
|
|
|
ty::TyProjection(..) |
|
|
|
|
ty::TyInfer(ty::TyVar(_)) |
|
|
|
|
ty::TyInfer(ty::FreshTy(_)) |
|
|
|
|
ty::TyInfer(ty::FreshIntTy(_)) |
|
|
|
|
ty::TyInfer(ty::FreshFloatTy(_)) => {
|
2015-02-02 12:14:01 +01:00
|
|
|
self.tcx().sess.bug(
|
|
|
|
&format!(
|
|
|
|
"asked to assemble constituent types of unexpected type: {}",
|
2015-02-24 09:50:36 +01:00
|
|
|
t.repr(self.tcx())));
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyBox(referent_ty) => { // Box<T>
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(vec![referent_ty])
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyRawPtr(ty::mt { ty: element_ty, ..}) |
|
|
|
|
ty::TyRef(_, ty::mt { ty: element_ty, ..}) => {
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(vec![element_ty])
|
2015-02-02 12:14:01 +01:00
|
|
|
},
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-06-12 16:50:13 -07:00
|
|
|
ty::TyArray(element_ty, _) | ty::TySlice(element_ty) => {
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(vec![element_ty])
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTuple(ref tys) => {
|
2015-02-02 12:14:01 +01:00
|
|
|
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(tys.clone())
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyClosure(def_id, substs) => {
|
2015-02-02 12:14:01 +01:00
|
|
|
assert_eq!(def_id.krate, ast::LOCAL_CRATE);
|
|
|
|
|
|
|
|
match self.closure_typer.closure_upvars(def_id, substs) {
|
|
|
|
Some(upvars) => {
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(upvars.iter().map(|c| c.ty).collect())
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
|
|
|
None => {
|
2015-02-19 21:13:55 +01:00
|
|
|
None
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
|
2015-03-05 16:20:02 -05:00
|
|
|
// for `PhantomData<T>`, we pass `T`
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyStruct(def_id, substs)
|
2015-03-05 16:20:02 -05:00
|
|
|
if Some(def_id) == self.tcx().lang_items.phantom_data() =>
|
|
|
|
{
|
|
|
|
Some(substs.types.get_slice(TypeSpace).to_vec())
|
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyStruct(def_id, substs) => {
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(ty::struct_fields(self.tcx(), def_id, substs).iter()
|
|
|
|
.map(|f| f.mt.ty)
|
|
|
|
.collect())
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyEnum(def_id, substs) => {
|
2015-02-19 21:13:55 +01:00
|
|
|
Some(ty::substd_enum_variants(self.tcx(), def_id, substs)
|
|
|
|
.iter()
|
2015-06-10 17:22:20 +01:00
|
|
|
.flat_map(|variant| &variant.args)
|
2015-02-19 21:13:55 +01:00
|
|
|
.map(|&ty| ty)
|
|
|
|
.collect())
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-27 01:13:31 +01:00
|
|
|
fn collect_predicates_for_types(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
trait_def_id: ast::DefId,
|
2015-03-26 15:53:00 -04:00
|
|
|
types: ty::Binder<Vec<Ty<'tcx>>>)
|
|
|
|
-> Vec<PredicateObligation<'tcx>>
|
|
|
|
{
|
2015-02-27 01:13:31 +01:00
|
|
|
let derived_cause = match self.tcx().lang_items.to_builtin_kind(trait_def_id) {
|
|
|
|
Some(_) => {
|
|
|
|
self.derived_cause(obligation, BuiltinDerivedObligation)
|
|
|
|
},
|
|
|
|
None => {
|
|
|
|
self.derived_cause(obligation, ImplDerivedObligation)
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// Because the types were potentially derived from
|
|
|
|
// higher-ranked obligations they may reference late-bound
|
|
|
|
// regions. For example, `for<'a> Foo<&'a int> : Copy` would
|
|
|
|
// yield a type like `for<'a> &'a int`. In general, we
|
|
|
|
// maintain the invariant that we never manipulate bound
|
|
|
|
// regions, so we have to process these bound regions somehow.
|
|
|
|
//
|
|
|
|
// The strategy is to:
|
|
|
|
//
|
|
|
|
// 1. Instantiate those regions to skolemized regions (e.g.,
|
|
|
|
// `for<'a> &'a int` becomes `&0 int`.
|
|
|
|
// 2. Produce something like `&'0 int : Copy`
|
|
|
|
// 3. Re-bind the regions back to `for<'a> &'a int : Copy`
|
|
|
|
|
|
|
|
// Move the binder into the individual types
|
|
|
|
let bound_types: Vec<ty::Binder<Ty<'tcx>>> =
|
|
|
|
types.skip_binder()
|
|
|
|
.iter()
|
|
|
|
.map(|&nested_ty| ty::Binder(nested_ty))
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
// For each type, produce a vector of resulting obligations
|
|
|
|
let obligations: Result<Vec<Vec<_>>, _> = bound_types.iter().map(|nested_ty| {
|
2015-03-10 07:02:27 -04:00
|
|
|
self.infcx.commit_if_ok(|snapshot| {
|
2015-02-27 01:13:31 +01:00
|
|
|
let (skol_ty, skol_map) =
|
2015-03-26 15:53:00 -04:00
|
|
|
self.infcx().skolemize_late_bound_regions(nested_ty, snapshot);
|
|
|
|
let Normalized { value: normalized_ty, mut obligations } =
|
|
|
|
project::normalize_with_depth(self,
|
|
|
|
obligation.cause.clone(),
|
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
&skol_ty);
|
|
|
|
let skol_obligation =
|
2015-04-15 11:57:29 +12:00
|
|
|
util::predicate_for_trait_def(self.tcx(),
|
|
|
|
derived_cause.clone(),
|
|
|
|
trait_def_id,
|
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
normalized_ty,
|
|
|
|
vec![]);
|
2015-03-26 15:53:00 -04:00
|
|
|
obligations.push(skol_obligation);
|
|
|
|
Ok(self.infcx().plug_leaks(skol_map, snapshot, &obligations))
|
2015-02-27 01:13:31 +01:00
|
|
|
})
|
2015-03-26 15:53:00 -04:00
|
|
|
}).collect();
|
2015-02-27 01:13:31 +01:00
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// Flatten those vectors (couldn't do it above due `collect`)
|
2015-02-27 01:13:31 +01:00
|
|
|
match obligations {
|
2015-06-10 17:22:20 +01:00
|
|
|
Ok(obligations) => obligations.into_iter().flat_map(|o| o).collect(),
|
2015-03-26 15:53:00 -04:00
|
|
|
Err(ErrorReported) => Vec::new(),
|
2015-02-27 01:13:31 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-12 10:53:35 -04:00
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// CONFIRMATION
|
|
|
|
//
|
|
|
|
// Confirmation unifies the output type parameters of the trait
|
|
|
|
// with the values found in the obligation, possibly yielding a
|
2015-02-18 19:34:55 -08:00
|
|
|
// type error. See `README.md` for more details.
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
fn confirm_candidate(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2014-12-17 14:16:28 -05:00
|
|
|
candidate: SelectionCandidate<'tcx>)
|
2014-09-29 22:11:30 +03:00
|
|
|
-> Result<Selection<'tcx>,SelectionError<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
|
|
|
debug!("confirm_candidate({}, {})",
|
|
|
|
obligation.repr(self.tcx()),
|
|
|
|
candidate.repr(self.tcx()));
|
|
|
|
|
|
|
|
match candidate {
|
2014-11-07 16:14:32 -05:00
|
|
|
BuiltinCandidate(builtin_bound) => {
|
|
|
|
Ok(VtableBuiltin(
|
|
|
|
try!(self.confirm_builtin_candidate(obligation, builtin_bound))))
|
|
|
|
}
|
|
|
|
|
2015-02-12 05:16:02 -05:00
|
|
|
PhantomFnCandidate |
|
2014-10-09 17:19:50 -04:00
|
|
|
ErrorCandidate => {
|
2015-06-03 02:14:45 +03:00
|
|
|
Ok(VtableBuiltin(VtableBuiltinData { nested: vec![] }))
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
ParamCandidate(param) => {
|
2015-01-08 21:41:42 -05:00
|
|
|
let obligations = self.confirm_param_candidate(obligation, param);
|
|
|
|
Ok(VtableParam(obligations))
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2015-02-07 14:24:34 +01:00
|
|
|
DefaultImplCandidate(trait_def_id) => {
|
2015-03-24 15:55:29 -04:00
|
|
|
let data = self.confirm_default_impl_candidate(obligation, trait_def_id);
|
|
|
|
Ok(VtableDefaultImpl(data))
|
|
|
|
}
|
|
|
|
|
|
|
|
DefaultImplObjectCandidate(trait_def_id) => {
|
|
|
|
let data = self.confirm_default_impl_object_candidate(obligation, trait_def_id);
|
2015-02-07 14:24:34 +01:00
|
|
|
Ok(VtableDefaultImpl(data))
|
2015-01-24 14:17:24 +01:00
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
ImplCandidate(impl_def_id) => {
|
|
|
|
let vtable_impl =
|
|
|
|
try!(self.confirm_impl_candidate(obligation, impl_def_id));
|
|
|
|
Ok(VtableImpl(vtable_impl))
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2015-01-24 22:00:03 +02:00
|
|
|
ClosureCandidate(closure_def_id, substs) => {
|
|
|
|
try!(self.confirm_closure_candidate(obligation, closure_def_id, &substs));
|
|
|
|
Ok(VtableClosure(closure_def_id, substs))
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
2014-12-01 09:23:40 -05:00
|
|
|
|
2015-02-18 11:58:44 -05:00
|
|
|
BuiltinObjectCandidate => {
|
|
|
|
// This indicates something like `(Trait+Send) :
|
|
|
|
// Send`. In this case, we know that this holds
|
|
|
|
// because that's what the object type is telling us,
|
|
|
|
// and there's really no additional obligations to
|
|
|
|
// prove and no types in particular to unify etc.
|
|
|
|
Ok(VtableParam(Vec::new()))
|
|
|
|
}
|
|
|
|
|
2014-12-23 05:26:34 -05:00
|
|
|
ObjectCandidate => {
|
|
|
|
let data = self.confirm_object_candidate(obligation);
|
|
|
|
Ok(VtableObject(data))
|
|
|
|
}
|
|
|
|
|
2014-12-01 09:23:40 -05:00
|
|
|
FnPointerCandidate => {
|
|
|
|
let fn_type =
|
|
|
|
try!(self.confirm_fn_pointer_candidate(obligation));
|
|
|
|
Ok(VtableFnPointer(fn_type))
|
|
|
|
}
|
2014-12-27 04:22:29 -05:00
|
|
|
|
|
|
|
ProjectionCandidate => {
|
|
|
|
self.confirm_projection_candidate(obligation);
|
2015-01-08 21:41:42 -05:00
|
|
|
Ok(VtableParam(Vec::new()))
|
2014-12-27 04:22:29 -05:00
|
|
|
}
|
2015-04-15 11:57:29 +12:00
|
|
|
|
|
|
|
BuiltinUnsizeCandidate => {
|
|
|
|
let data = try!(self.confirm_builtin_unsize_candidate(obligation));
|
|
|
|
Ok(VtableBuiltin(data))
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-12-27 04:22:29 -05:00
|
|
|
fn confirm_projection_candidate(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>)
|
|
|
|
{
|
|
|
|
let _: Result<(),()> =
|
2015-03-10 07:02:27 -04:00
|
|
|
self.infcx.commit_if_ok(|snapshot| {
|
2014-12-27 04:22:29 -05:00
|
|
|
let result =
|
|
|
|
self.match_projection_obligation_against_bounds_from_trait(obligation,
|
|
|
|
snapshot);
|
|
|
|
assert!(result);
|
|
|
|
Ok(())
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
fn confirm_param_candidate(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2014-12-27 04:22:29 -05:00
|
|
|
param: ty::PolyTraitRef<'tcx>)
|
2015-01-08 21:41:42 -05:00
|
|
|
-> Vec<PredicateObligation<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
|
|
|
debug!("confirm_param_candidate({},{})",
|
|
|
|
obligation.repr(self.tcx()),
|
|
|
|
param.repr(self.tcx()));
|
|
|
|
|
2014-12-14 07:17:23 -05:00
|
|
|
// During evaluation, we already checked that this
|
|
|
|
// where-clause trait-ref could be unified with the obligation
|
|
|
|
// trait-ref. Repeat that unification now without any
|
|
|
|
// transactional boundary; it should not fail.
|
2015-01-08 21:41:42 -05:00
|
|
|
match self.match_where_clause_trait_ref(obligation, param.clone()) {
|
|
|
|
Ok(obligations) => obligations,
|
|
|
|
Err(()) => {
|
2014-12-14 07:17:23 -05:00
|
|
|
self.tcx().sess.bug(
|
2015-02-01 21:53:25 -05:00
|
|
|
&format!("Where clause `{}` was applicable to `{}` but now is not",
|
|
|
|
param.repr(self.tcx()),
|
|
|
|
obligation.repr(self.tcx())));
|
2014-12-14 07:17:23 -05:00
|
|
|
}
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
fn confirm_builtin_candidate(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2014-10-09 17:19:50 -04:00
|
|
|
bound: ty::BuiltinBound)
|
2014-12-07 11:10:48 -05:00
|
|
|
-> Result<VtableBuiltinData<PredicateObligation<'tcx>>,
|
2014-09-29 22:11:30 +03:00
|
|
|
SelectionError<'tcx>>
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
|
|
|
debug!("confirm_builtin_candidate({})",
|
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
2014-12-07 11:10:48 -05:00
|
|
|
match try!(self.builtin_bound(bound, obligation)) {
|
2014-10-09 17:19:50 -04:00
|
|
|
If(nested) => Ok(self.vtable_builtin_data(obligation, bound, nested)),
|
2014-11-07 16:14:32 -05:00
|
|
|
AmbiguousBuiltin | ParameterBuiltin => {
|
2014-10-09 17:19:50 -04:00
|
|
|
self.tcx().sess.span_bug(
|
|
|
|
obligation.cause.span,
|
2015-01-07 11:58:31 -05:00
|
|
|
&format!("builtin bound for {} was ambig",
|
2015-02-20 14:08:14 -05:00
|
|
|
obligation.repr(self.tcx())));
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn vtable_builtin_data(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2014-10-09 17:19:50 -04:00
|
|
|
bound: ty::BuiltinBound,
|
2015-03-26 15:53:00 -04:00
|
|
|
nested: ty::Binder<Vec<Ty<'tcx>>>)
|
2014-12-07 11:10:48 -05:00
|
|
|
-> VtableBuiltinData<PredicateObligation<'tcx>>
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2015-02-27 01:13:31 +01:00
|
|
|
let trait_def = match self.tcx().lang_items.from_builtin_kind(bound) {
|
|
|
|
Ok(def_id) => def_id,
|
|
|
|
Err(_) => {
|
|
|
|
self.tcx().sess.bug("builtin trait definition not found");
|
|
|
|
}
|
2014-10-09 17:19:50 -04:00
|
|
|
};
|
2014-12-07 11:10:48 -05:00
|
|
|
|
2015-02-27 01:13:31 +01:00
|
|
|
let obligations = self.collect_predicates_for_types(obligation, trait_def, nested);
|
|
|
|
|
2014-12-07 11:10:48 -05:00
|
|
|
debug!("vtable_builtin_data: obligations={}",
|
|
|
|
obligations.repr(self.tcx()));
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
VtableBuiltinData { nested: obligations }
|
|
|
|
}
|
|
|
|
|
2015-02-19 10:30:45 -05:00
|
|
|
/// This handles the case where a `impl Foo for ..` impl is being used.
|
|
|
|
/// The idea is that the impl applies to `X : Foo` if the following conditions are met:
|
|
|
|
///
|
|
|
|
/// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
|
|
|
|
/// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
|
2015-02-02 12:14:01 +01:00
|
|
|
fn confirm_default_impl_candidate(&mut self,
|
2015-02-18 23:31:03 +01:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2015-03-24 15:55:29 -04:00
|
|
|
trait_def_id: ast::DefId)
|
|
|
|
-> VtableDefaultImplData<PredicateObligation<'tcx>>
|
2015-02-02 12:14:01 +01:00
|
|
|
{
|
|
|
|
debug!("confirm_default_impl_candidate({}, {})",
|
|
|
|
obligation.repr(self.tcx()),
|
2015-03-24 15:55:29 -04:00
|
|
|
trait_def_id.repr(self.tcx()));
|
2015-02-02 12:14:01 +01:00
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// binder is moved below
|
|
|
|
let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
|
2015-02-19 21:13:55 +01:00
|
|
|
match self.constituent_types_for_ty(self_ty) {
|
2015-03-26 15:53:00 -04:00
|
|
|
Some(types) => self.vtable_default_impl(obligation, trait_def_id, ty::Binder(types)),
|
2015-02-19 21:13:55 +01:00
|
|
|
None => {
|
|
|
|
self.tcx().sess.bug(
|
|
|
|
&format!(
|
|
|
|
"asked to confirm default implementation for ambiguous type: {}",
|
2015-02-24 09:50:36 +01:00
|
|
|
self_ty.repr(self.tcx())));
|
2015-02-19 21:13:55 +01:00
|
|
|
}
|
|
|
|
}
|
2015-02-02 12:14:01 +01:00
|
|
|
}
|
|
|
|
|
2015-03-24 15:55:29 -04:00
|
|
|
fn confirm_default_impl_object_candidate(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
trait_def_id: ast::DefId)
|
|
|
|
-> VtableDefaultImplData<PredicateObligation<'tcx>>
|
|
|
|
{
|
|
|
|
debug!("confirm_default_impl_object_candidate({}, {})",
|
|
|
|
obligation.repr(self.tcx()),
|
|
|
|
trait_def_id.repr(self.tcx()));
|
|
|
|
|
|
|
|
assert!(ty::has_attr(self.tcx(), trait_def_id, "rustc_reflect_like"));
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// OK to skip binder, it is reintroduced below
|
|
|
|
let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
|
2015-03-24 15:55:29 -04:00
|
|
|
match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTrait(ref data) => {
|
2015-03-26 15:53:00 -04:00
|
|
|
// OK to skip the binder, it is reintroduced below
|
2015-03-24 15:55:29 -04:00
|
|
|
let input_types = data.principal.skip_binder().substs.types.get_slice(TypeSpace);
|
|
|
|
let assoc_types = data.bounds.projection_bounds
|
|
|
|
.iter()
|
|
|
|
.map(|pb| pb.skip_binder().ty);
|
|
|
|
let all_types: Vec<_> = input_types.iter().cloned()
|
|
|
|
.chain(assoc_types)
|
|
|
|
.collect();
|
2015-03-26 15:53:00 -04:00
|
|
|
|
|
|
|
// reintroduce the two binding levels we skipped, then flatten into one
|
|
|
|
let all_types = ty::Binder(ty::Binder(all_types));
|
|
|
|
let all_types = ty::flatten_late_bound_regions(self.tcx(), &all_types);
|
|
|
|
|
2015-03-24 15:55:29 -04:00
|
|
|
self.vtable_default_impl(obligation, trait_def_id, all_types)
|
|
|
|
}
|
|
|
|
_ => {
|
|
|
|
self.tcx().sess.bug(
|
|
|
|
&format!(
|
|
|
|
"asked to confirm default object implementation for non-object type: {}",
|
|
|
|
self_ty.repr(self.tcx())));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-02-19 10:30:45 -05:00
|
|
|
/// See `confirm_default_impl_candidate`
|
2015-02-02 12:14:01 +01:00
|
|
|
fn vtable_default_impl(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
trait_def_id: ast::DefId,
|
2015-03-26 15:53:00 -04:00
|
|
|
nested: ty::Binder<Vec<Ty<'tcx>>>)
|
2015-02-07 14:24:34 +01:00
|
|
|
-> VtableDefaultImplData<PredicateObligation<'tcx>>
|
2015-02-02 12:14:01 +01:00
|
|
|
{
|
2015-03-26 15:53:00 -04:00
|
|
|
debug!("vtable_default_impl_data: nested={}", nested.repr(self.tcx()));
|
2015-02-18 23:31:03 +01:00
|
|
|
|
2015-02-27 01:13:31 +01:00
|
|
|
let mut obligations = self.collect_predicates_for_types(obligation,
|
|
|
|
trait_def_id,
|
|
|
|
nested);
|
2015-02-02 12:14:01 +01:00
|
|
|
|
2015-06-03 02:14:45 +03:00
|
|
|
let trait_obligations: Result<Vec<_>,()> = self.infcx.commit_if_ok(|snapshot| {
|
2015-03-26 15:53:00 -04:00
|
|
|
let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
|
|
|
|
let (trait_ref, skol_map) =
|
|
|
|
self.infcx().skolemize_late_bound_regions(&poly_trait_ref, snapshot);
|
|
|
|
Ok(self.impl_or_trait_obligations(obligation.cause.clone(),
|
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
trait_def_id,
|
|
|
|
&trait_ref.substs,
|
|
|
|
skol_map,
|
|
|
|
snapshot))
|
2015-02-18 23:31:03 +01:00
|
|
|
});
|
|
|
|
|
2015-06-03 02:14:45 +03:00
|
|
|
// no Errors in that code above
|
|
|
|
obligations.append(&mut trait_obligations.unwrap());
|
2015-03-26 15:53:00 -04:00
|
|
|
|
2015-02-02 12:14:01 +01:00
|
|
|
debug!("vtable_default_impl_data: obligations={}", obligations.repr(self.tcx()));
|
|
|
|
|
2015-02-07 14:24:34 +01:00
|
|
|
VtableDefaultImplData {
|
2015-02-02 12:14:01 +01:00
|
|
|
trait_def_id: trait_def_id,
|
|
|
|
nested: obligations
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
fn confirm_impl_candidate(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2014-09-12 10:53:35 -04:00
|
|
|
impl_def_id: ast::DefId)
|
2014-12-07 11:10:48 -05:00
|
|
|
-> Result<VtableImplData<'tcx, PredicateObligation<'tcx>>,
|
2014-09-29 22:11:30 +03:00
|
|
|
SelectionError<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
|
|
|
debug!("confirm_impl_candidate({},{})",
|
|
|
|
obligation.repr(self.tcx()),
|
|
|
|
impl_def_id.repr(self.tcx()));
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
// First, create the substitutions by matching the impl again,
|
|
|
|
// this time not in a probe.
|
2015-03-10 07:02:27 -04:00
|
|
|
self.infcx.commit_if_ok(|snapshot| {
|
2015-04-19 23:38:37 +03:00
|
|
|
let (substs, skol_map) =
|
2014-12-17 14:16:28 -05:00
|
|
|
self.rematch_impl(impl_def_id, obligation,
|
2015-04-19 23:38:37 +03:00
|
|
|
snapshot);
|
2015-01-08 06:58:41 -05:00
|
|
|
debug!("confirm_impl_candidate substs={}", substs.repr(self.tcx()));
|
2014-12-06 11:39:25 -05:00
|
|
|
Ok(self.vtable_impl(impl_def_id, substs, obligation.cause.clone(),
|
2014-12-14 07:17:23 -05:00
|
|
|
obligation.recursion_depth + 1, skol_map, snapshot))
|
|
|
|
})
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
fn vtable_impl(&mut self,
|
|
|
|
impl_def_id: ast::DefId,
|
2015-06-03 02:14:45 +03:00
|
|
|
mut substs: Normalized<'tcx, Substs<'tcx>>,
|
2014-09-29 22:11:30 +03:00
|
|
|
cause: ObligationCause<'tcx>,
|
2015-03-25 17:06:52 -07:00
|
|
|
recursion_depth: usize,
|
2014-12-14 07:17:23 -05:00
|
|
|
skol_map: infer::SkolemizationMap,
|
|
|
|
snapshot: &infer::CombinedSnapshot)
|
2014-12-07 11:10:48 -05:00
|
|
|
-> VtableImplData<'tcx, PredicateObligation<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2014-12-14 07:17:23 -05:00
|
|
|
debug!("vtable_impl(impl_def_id={}, substs={}, recursion_depth={}, skol_map={})",
|
|
|
|
impl_def_id.repr(self.tcx()),
|
|
|
|
substs.repr(self.tcx()),
|
|
|
|
recursion_depth,
|
|
|
|
skol_map.repr(self.tcx()));
|
|
|
|
|
2015-01-08 06:58:41 -05:00
|
|
|
let mut impl_obligations =
|
2015-02-19 10:30:45 -05:00
|
|
|
self.impl_or_trait_obligations(cause,
|
|
|
|
recursion_depth,
|
|
|
|
impl_def_id,
|
|
|
|
&substs.value,
|
|
|
|
skol_map,
|
|
|
|
snapshot);
|
2014-12-14 07:17:23 -05:00
|
|
|
|
2015-01-08 06:58:41 -05:00
|
|
|
debug!("vtable_impl: impl_def_id={} impl_obligations={}",
|
2014-12-14 07:17:23 -05:00
|
|
|
impl_def_id.repr(self.tcx()),
|
2015-01-08 06:58:41 -05:00
|
|
|
impl_obligations.repr(self.tcx()));
|
|
|
|
|
2015-06-03 02:14:45 +03:00
|
|
|
impl_obligations.append(&mut substs.obligations);
|
2014-12-14 07:17:23 -05:00
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
VtableImplData { impl_def_id: impl_def_id,
|
2015-01-08 06:58:41 -05:00
|
|
|
substs: substs.value,
|
|
|
|
nested: impl_obligations }
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-12-23 05:26:34 -05:00
|
|
|
fn confirm_object_candidate(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>)
|
|
|
|
-> VtableObjectData<'tcx>
|
|
|
|
{
|
|
|
|
debug!("confirm_object_candidate({})",
|
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// FIXME skipping binder here seems wrong -- we should
|
|
|
|
// probably flatten the binder from the obligation and the
|
|
|
|
// binder from the object. Have to try to make a broken test
|
|
|
|
// case that results. -nmatsakis
|
|
|
|
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
|
2014-12-23 05:26:34 -05:00
|
|
|
let poly_trait_ref = match self_ty.sty {
|
2015-06-11 16:21:46 -07:00
|
|
|
ty::TyTrait(ref data) => {
|
2014-12-23 05:26:34 -05:00
|
|
|
data.principal_trait_ref_with_self_ty(self.tcx(), self_ty)
|
|
|
|
}
|
|
|
|
_ => {
|
|
|
|
self.tcx().sess.span_bug(obligation.cause.span,
|
|
|
|
"object candidate with non-object");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2015-03-03 08:01:13 -05:00
|
|
|
// Upcast the object type to the obligation type. There must
|
|
|
|
// be exactly one applicable trait-reference; if this were not
|
|
|
|
// the case, we would have reported an ambiguity error rather
|
|
|
|
// than successfully selecting one of the candidates.
|
|
|
|
let upcast_trait_refs = self.upcast(poly_trait_ref.clone(), obligation);
|
|
|
|
assert_eq!(upcast_trait_refs.len(), 1);
|
|
|
|
let upcast_trait_ref = upcast_trait_refs.into_iter().next().unwrap();
|
2014-12-23 05:26:34 -05:00
|
|
|
|
2015-03-03 08:01:13 -05:00
|
|
|
match self.match_poly_trait_ref(obligation, upcast_trait_ref.clone()) {
|
2014-12-23 05:26:34 -05:00
|
|
|
Ok(()) => { }
|
|
|
|
Err(()) => {
|
|
|
|
self.tcx().sess.span_bug(obligation.cause.span,
|
|
|
|
"failed to match trait refs");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-03 08:01:13 -05:00
|
|
|
VtableObjectData { object_ty: self_ty,
|
|
|
|
upcast_trait_ref: upcast_trait_ref }
|
2014-12-23 05:26:34 -05:00
|
|
|
}
|
|
|
|
|
2014-12-01 09:23:40 -05:00
|
|
|
fn confirm_fn_pointer_candidate(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation<'tcx>)
|
2014-12-01 09:23:40 -05:00
|
|
|
-> Result<ty::Ty<'tcx>,SelectionError<'tcx>>
|
|
|
|
{
|
|
|
|
debug!("confirm_fn_pointer_candidate({})",
|
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
2015-03-26 15:53:00 -04:00
|
|
|
// ok to skip binder; it is reintroduced below
|
|
|
|
let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
|
2015-01-10 11:54:15 -05:00
|
|
|
let sig = ty::ty_fn_sig(self_ty);
|
2015-03-26 15:53:00 -04:00
|
|
|
let trait_ref =
|
2015-01-10 11:54:15 -05:00
|
|
|
util::closure_trait_ref_and_return_type(self.tcx(),
|
|
|
|
obligation.predicate.def_id(),
|
|
|
|
self_ty,
|
|
|
|
sig,
|
2015-03-26 15:53:00 -04:00
|
|
|
util::TupleArgumentsFlag::Yes)
|
|
|
|
.map_bound(|(trait_ref, _)| trait_ref);
|
2014-12-01 09:23:40 -05:00
|
|
|
|
2014-12-06 11:39:25 -05:00
|
|
|
try!(self.confirm_poly_trait_refs(obligation.cause.clone(),
|
2014-12-17 14:16:28 -05:00
|
|
|
obligation.predicate.to_poly_trait_ref(),
|
2014-12-14 07:17:23 -05:00
|
|
|
trait_ref));
|
2014-12-01 09:23:40 -05:00
|
|
|
Ok(self_ty)
|
|
|
|
}
|
|
|
|
|
2015-01-24 22:00:03 +02:00
|
|
|
fn confirm_closure_candidate(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
closure_def_id: ast::DefId,
|
|
|
|
substs: &Substs<'tcx>)
|
|
|
|
-> Result<(),SelectionError<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2015-01-24 22:00:03 +02:00
|
|
|
debug!("confirm_closure_candidate({},{},{})",
|
2014-09-12 10:53:35 -04:00
|
|
|
obligation.repr(self.tcx()),
|
2014-10-18 10:46:57 -07:00
|
|
|
closure_def_id.repr(self.tcx()),
|
|
|
|
substs.repr(self.tcx()));
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-01-10 11:54:15 -05:00
|
|
|
let trait_ref = self.closure_trait_ref(obligation,
|
|
|
|
closure_def_id,
|
|
|
|
substs);
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2015-01-24 22:00:03 +02:00
|
|
|
debug!("confirm_closure_candidate(closure_def_id={}, trait_ref={})",
|
2014-11-26 10:07:22 -05:00
|
|
|
closure_def_id.repr(self.tcx()),
|
|
|
|
trait_ref.repr(self.tcx()));
|
|
|
|
|
2014-12-06 11:39:25 -05:00
|
|
|
self.confirm_poly_trait_refs(obligation.cause.clone(),
|
2014-12-17 14:16:28 -05:00
|
|
|
obligation.predicate.to_poly_trait_ref(),
|
2014-12-14 07:17:23 -05:00
|
|
|
trait_ref)
|
|
|
|
}
|
|
|
|
|
2015-01-24 22:15:08 +02:00
|
|
|
/// In the case of closure types and fn pointers,
|
2014-12-14 07:17:23 -05:00
|
|
|
/// we currently treat the input type parameters on the trait as
|
|
|
|
/// outputs. This means that when we have a match we have only
|
|
|
|
/// considered the self type, so we have to go back and make sure
|
|
|
|
/// to relate the argument types too. This is kind of wrong, but
|
|
|
|
/// since we control the full set of impls, also not that wrong,
|
|
|
|
/// and it DOES yield better error messages (since we don't report
|
|
|
|
/// errors as if there is no applicable impl, but rather report
|
|
|
|
/// errors are about mismatched argument types.
|
|
|
|
///
|
2015-01-24 22:15:08 +02:00
|
|
|
/// Here is an example. Imagine we have an closure expression
|
2014-12-14 07:17:23 -05:00
|
|
|
/// and we desugared it so that the type of the expression is
|
|
|
|
/// `Closure`, and `Closure` expects an int as argument. Then it
|
|
|
|
/// is "as if" the compiler generated this impl:
|
|
|
|
///
|
|
|
|
/// impl Fn(int) for Closure { ... }
|
|
|
|
///
|
2015-03-25 17:06:52 -07:00
|
|
|
/// Now imagine our obligation is `Fn(usize) for Closure`. So far
|
2014-12-14 07:17:23 -05:00
|
|
|
/// we have matched the self-type `Closure`. At this point we'll
|
2015-03-25 17:06:52 -07:00
|
|
|
/// compare the `int` to `usize` and generate an error.
|
2014-12-14 07:17:23 -05:00
|
|
|
///
|
|
|
|
/// Note that this checking occurs *after* the impl has selected,
|
|
|
|
/// because these output type parameters should not affect the
|
|
|
|
/// selection of the impl. Therefore, if there is a mismatch, we
|
|
|
|
/// report an error to the user.
|
|
|
|
fn confirm_poly_trait_refs(&mut self,
|
|
|
|
obligation_cause: ObligationCause,
|
2014-12-17 14:16:28 -05:00
|
|
|
obligation_trait_ref: ty::PolyTraitRef<'tcx>,
|
|
|
|
expected_trait_ref: ty::PolyTraitRef<'tcx>)
|
2014-12-14 07:17:23 -05:00
|
|
|
-> Result<(), SelectionError<'tcx>>
|
|
|
|
{
|
|
|
|
let origin = infer::RelateOutputImplTypes(obligation_cause.span);
|
|
|
|
|
|
|
|
let obligation_trait_ref = obligation_trait_ref.clone();
|
|
|
|
match self.infcx.sub_poly_trait_refs(false,
|
|
|
|
origin,
|
|
|
|
expected_trait_ref.clone(),
|
|
|
|
obligation_trait_ref.clone()) {
|
|
|
|
Ok(()) => Ok(()),
|
|
|
|
Err(e) => Err(OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2015-04-15 11:57:29 +12:00
|
|
|
fn confirm_builtin_unsize_candidate(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,)
|
|
|
|
-> Result<VtableBuiltinData<PredicateObligation<'tcx>>,
|
|
|
|
SelectionError<'tcx>> {
|
|
|
|
let tcx = self.tcx();
|
|
|
|
|
2015-05-13 14:57:47 +12:00
|
|
|
// assemble_candidates_for_unsizing should ensure there are no late bound
|
|
|
|
// regions here. See the comment there for more details.
|
|
|
|
let source = self.infcx.shallow_resolve(
|
|
|
|
ty::no_late_bound_regions(tcx, &obligation.self_ty()).unwrap());
|
2015-04-15 11:57:29 +12:00
|
|
|
let target = self.infcx.shallow_resolve(obligation.predicate.0.input_types()[0]);
|
|
|
|
|
|
|
|
debug!("confirm_builtin_unsize_candidate(source={}, target={})",
|
|
|
|
source.repr(tcx), target.repr(tcx));
|
|
|
|
|
|
|
|
let mut nested = vec![];
|
|
|
|
match (&source.sty, &target.sty) {
|
|
|
|
// Trait+Kx+'a -> Trait+Ky+'b (upcasts).
|
2015-06-11 16:21:46 -07:00
|
|
|
(&ty::TyTrait(ref data_a), &ty::TyTrait(ref data_b)) => {
|
2015-04-15 11:57:29 +12:00
|
|
|
// See assemble_candidates_for_unsizing for more info.
|
|
|
|
let bounds = ty::ExistentialBounds {
|
|
|
|
region_bound: data_b.bounds.region_bound,
|
|
|
|
builtin_bounds: data_b.bounds.builtin_bounds,
|
|
|
|
projection_bounds: data_a.bounds.projection_bounds.clone(),
|
|
|
|
};
|
|
|
|
|
|
|
|
let new_trait = ty::mk_trait(tcx, data_a.principal.clone(), bounds);
|
|
|
|
let origin = infer::Misc(obligation.cause.span);
|
|
|
|
if self.infcx.sub_types(false, origin, new_trait, target).is_err() {
|
|
|
|
return Err(Unimplemented);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Register one obligation for 'a: 'b.
|
|
|
|
let cause = ObligationCause::new(obligation.cause.span,
|
|
|
|
obligation.cause.body_id,
|
|
|
|
ObjectCastObligation(target));
|
|
|
|
let outlives = ty::OutlivesPredicate(data_a.bounds.region_bound,
|
|
|
|
data_b.bounds.region_bound);
|
|
|
|
nested.push(Obligation::with_depth(cause,
|
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
ty::Binder(outlives).as_predicate()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// T -> Trait.
|
2015-06-11 16:21:46 -07:00
|
|
|
(_, &ty::TyTrait(ref data)) => {
|
2015-04-15 11:57:29 +12:00
|
|
|
let object_did = data.principal_def_id();
|
|
|
|
if !object_safety::is_object_safe(tcx, object_did) {
|
|
|
|
return Err(TraitNotObjectSafe(object_did));
|
|
|
|
}
|
|
|
|
|
|
|
|
let cause = ObligationCause::new(obligation.cause.span,
|
|
|
|
obligation.cause.body_id,
|
|
|
|
ObjectCastObligation(target));
|
|
|
|
let mut push = |predicate| {
|
|
|
|
nested.push(Obligation::with_depth(cause.clone(),
|
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
predicate));
|
|
|
|
};
|
|
|
|
|
|
|
|
// Create the obligation for casting from T to Trait.
|
|
|
|
push(data.principal_trait_ref_with_self_ty(tcx, source).as_predicate());
|
|
|
|
|
|
|
|
// We can only make objects from sized types.
|
|
|
|
let mut builtin_bounds = data.bounds.builtin_bounds;
|
|
|
|
builtin_bounds.insert(ty::BoundSized);
|
|
|
|
|
|
|
|
// Create additional obligations for all the various builtin
|
|
|
|
// bounds attached to the object cast. (In other words, if the
|
|
|
|
// object type is Foo+Send, this would create an obligation
|
|
|
|
// for the Send check.)
|
|
|
|
for bound in &builtin_bounds {
|
|
|
|
if let Ok(tr) = util::trait_ref_for_builtin_bound(tcx, bound, source) {
|
|
|
|
push(tr.as_predicate());
|
|
|
|
} else {
|
|
|
|
return Err(Unimplemented);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create obligations for the projection predicates.
|
|
|
|
for bound in data.projection_bounds_with_self_ty(tcx, source) {
|
|
|
|
push(bound.as_predicate());
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the type is `Foo+'a`, ensures that the type
|
|
|
|
// being cast to `Foo+'a` outlives `'a`:
|
|
|
|
let outlives = ty::OutlivesPredicate(source,
|
|
|
|
data.bounds.region_bound);
|
|
|
|
push(ty::Binder(outlives).as_predicate());
|
|
|
|
}
|
|
|
|
|
|
|
|
// [T; n] -> [T].
|
2015-06-12 16:50:13 -07:00
|
|
|
(&ty::TyArray(a, _), &ty::TySlice(b)) => {
|
2015-04-15 11:57:29 +12:00
|
|
|
let origin = infer::Misc(obligation.cause.span);
|
|
|
|
if self.infcx.sub_types(false, origin, a, b).is_err() {
|
|
|
|
return Err(Unimplemented);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Struct<T> -> Struct<U>.
|
2015-06-11 16:21:46 -07:00
|
|
|
(&ty::TyStruct(def_id, substs_a), &ty::TyStruct(_, substs_b)) => {
|
2015-04-15 11:57:29 +12:00
|
|
|
let fields = ty::lookup_struct_fields(tcx, def_id).iter().map(|f| {
|
|
|
|
ty::lookup_field_type_unsubstituted(tcx, def_id, f.id)
|
|
|
|
}).collect::<Vec<_>>();
|
|
|
|
|
2015-06-05 20:49:23 +03:00
|
|
|
// The last field of the structure has to exist and contain type parameters.
|
|
|
|
let field = if let Some(&field) = fields.last() {
|
|
|
|
field
|
2015-04-15 11:57:29 +12:00
|
|
|
} else {
|
|
|
|
return Err(Unimplemented);
|
|
|
|
};
|
2015-06-05 20:49:23 +03:00
|
|
|
let mut ty_params = vec![];
|
|
|
|
ty::walk_ty(field, |ty| {
|
2015-06-11 16:21:46 -07:00
|
|
|
if let ty::TyParam(p) = ty.sty {
|
2015-06-05 20:49:23 +03:00
|
|
|
assert!(p.space == TypeSpace);
|
|
|
|
let idx = p.idx as usize;
|
|
|
|
if !ty_params.contains(&idx) {
|
|
|
|
ty_params.push(idx);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
});
|
|
|
|
if ty_params.is_empty() {
|
|
|
|
return Err(Unimplemented);
|
|
|
|
}
|
2015-04-15 11:57:29 +12:00
|
|
|
|
2015-06-05 20:49:23 +03:00
|
|
|
// Replace type parameters used in unsizing with
|
2015-06-11 16:21:46 -07:00
|
|
|
// TyError and ensure they do not affect any other fields.
|
2015-04-15 11:57:29 +12:00
|
|
|
// This could be checked after type collection for any struct
|
|
|
|
// with a potentially unsized trailing field.
|
|
|
|
let mut new_substs = substs_a.clone();
|
2015-06-05 20:49:23 +03:00
|
|
|
for &i in &ty_params {
|
|
|
|
new_substs.types.get_mut_slice(TypeSpace)[i] = tcx.types.err;
|
|
|
|
}
|
2015-04-15 11:57:29 +12:00
|
|
|
for &ty in fields.init() {
|
|
|
|
if ty::type_is_error(ty.subst(tcx, &new_substs)) {
|
|
|
|
return Err(Unimplemented);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-06-05 20:49:23 +03:00
|
|
|
// Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
|
|
|
|
let inner_source = field.subst(tcx, substs_a);
|
|
|
|
let inner_target = field.subst(tcx, substs_b);
|
2015-04-15 11:57:29 +12:00
|
|
|
|
2015-06-05 20:49:23 +03:00
|
|
|
// Check that the source structure with the target's
|
|
|
|
// type parameters is a subtype of the target.
|
|
|
|
for &i in &ty_params {
|
|
|
|
let param_b = *substs_b.types.get(TypeSpace, i);
|
|
|
|
new_substs.types.get_mut_slice(TypeSpace)[i] = param_b;
|
|
|
|
}
|
2015-04-15 11:57:29 +12:00
|
|
|
let new_struct = ty::mk_struct(tcx, def_id, tcx.mk_substs(new_substs));
|
|
|
|
let origin = infer::Misc(obligation.cause.span);
|
|
|
|
if self.infcx.sub_types(false, origin, new_struct, target).is_err() {
|
|
|
|
return Err(Unimplemented);
|
|
|
|
}
|
|
|
|
|
2015-06-05 20:49:23 +03:00
|
|
|
// Construct the nested Field<T>: Unsize<Field<U>> predicate.
|
2015-04-15 11:57:29 +12:00
|
|
|
nested.push(util::predicate_for_trait_def(tcx,
|
|
|
|
obligation.cause.clone(),
|
|
|
|
obligation.predicate.def_id(),
|
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
inner_source,
|
|
|
|
vec![inner_target]));
|
|
|
|
}
|
|
|
|
|
|
|
|
_ => unreachable!()
|
|
|
|
};
|
|
|
|
|
2015-06-03 02:14:45 +03:00
|
|
|
Ok(VtableBuiltinData { nested: nested })
|
2015-04-15 11:57:29 +12:00
|
|
|
}
|
|
|
|
|
2014-09-12 10:53:35 -04:00
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// Matching
|
|
|
|
//
|
|
|
|
// Matching is a common path used for both evaluation and
|
|
|
|
// confirmation. It basically unifies types that appear in impls
|
|
|
|
// and traits. This does affect the surrounding environment;
|
|
|
|
// therefore, when used during evaluation, match routines must be
|
|
|
|
// run inside of a `probe()` so that their side-effects are
|
|
|
|
// contained.
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
fn rematch_impl(&mut self,
|
|
|
|
impl_def_id: ast::DefId,
|
2014-12-14 07:17:23 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2015-04-19 23:38:37 +03:00
|
|
|
snapshot: &infer::CombinedSnapshot)
|
|
|
|
-> (Normalized<'tcx, Substs<'tcx>>, infer::SkolemizationMap)
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2015-04-19 23:38:37 +03:00
|
|
|
match self.match_impl(impl_def_id, obligation, snapshot) {
|
|
|
|
Ok((substs, skol_map)) => (substs, skol_map),
|
2014-10-09 17:19:50 -04:00
|
|
|
Err(()) => {
|
|
|
|
self.tcx().sess.bug(
|
2015-01-07 11:58:31 -05:00
|
|
|
&format!("Impl {} was matchable against {} but now is not",
|
2014-10-09 17:19:50 -04:00
|
|
|
impl_def_id.repr(self.tcx()),
|
2015-02-20 14:08:14 -05:00
|
|
|
obligation.repr(self.tcx())));
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn match_impl(&mut self,
|
|
|
|
impl_def_id: ast::DefId,
|
2014-12-14 07:17:23 -05:00
|
|
|
obligation: &TraitObligation<'tcx>,
|
2015-04-19 23:38:37 +03:00
|
|
|
snapshot: &infer::CombinedSnapshot)
|
|
|
|
-> Result<(Normalized<'tcx, Substs<'tcx>>,
|
|
|
|
infer::SkolemizationMap), ()>
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2014-12-14 07:17:23 -05:00
|
|
|
let impl_trait_ref = ty::impl_trait_ref(self.tcx(), impl_def_id).unwrap();
|
2014-11-16 07:10:37 -05:00
|
|
|
|
|
|
|
// Before we create the substitutions and everything, first
|
|
|
|
// consider a "quick reject". This avoids creating more types
|
|
|
|
// and so forth that we need to.
|
2015-04-21 18:59:58 +03:00
|
|
|
if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
|
2014-11-16 07:10:37 -05:00
|
|
|
return Err(());
|
|
|
|
}
|
|
|
|
|
2015-04-19 23:38:37 +03:00
|
|
|
let (skol_obligation, skol_map) = self.infcx().skolemize_late_bound_regions(
|
|
|
|
&obligation.predicate,
|
|
|
|
snapshot);
|
|
|
|
let skol_obligation_trait_ref = skol_obligation.trait_ref;
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
let impl_substs = util::fresh_type_vars_for_impl(self.infcx,
|
|
|
|
obligation.cause.span,
|
|
|
|
impl_def_id);
|
2014-10-09 17:19:50 -04:00
|
|
|
|
|
|
|
let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
|
|
|
|
&impl_substs);
|
|
|
|
|
2015-01-08 06:58:41 -05:00
|
|
|
let impl_trait_ref =
|
|
|
|
project::normalize_with_depth(self,
|
|
|
|
obligation.cause.clone(),
|
|
|
|
obligation.recursion_depth + 1,
|
|
|
|
&impl_trait_ref);
|
|
|
|
|
2014-12-14 07:17:23 -05:00
|
|
|
debug!("match_impl(impl_def_id={}, obligation={}, \
|
|
|
|
impl_trait_ref={}, skol_obligation_trait_ref={})",
|
|
|
|
impl_def_id.repr(self.tcx()),
|
|
|
|
obligation.repr(self.tcx()),
|
|
|
|
impl_trait_ref.repr(self.tcx()),
|
|
|
|
skol_obligation_trait_ref.repr(self.tcx()));
|
|
|
|
|
|
|
|
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
|
2015-02-24 09:50:36 +01:00
|
|
|
if let Err(e) = self.infcx.sub_trait_refs(false,
|
|
|
|
origin,
|
|
|
|
impl_trait_ref.value.clone(),
|
|
|
|
skol_obligation_trait_ref) {
|
|
|
|
debug!("match_impl: failed sub_trait_refs due to `{}`",
|
|
|
|
ty::type_err_to_str(self.tcx(), &e));
|
|
|
|
return Err(());
|
2014-12-14 07:17:23 -05:00
|
|
|
}
|
|
|
|
|
2015-04-19 23:38:37 +03:00
|
|
|
if let Err(e) = self.infcx.leak_check(&skol_map, snapshot) {
|
2015-02-24 09:50:36 +01:00
|
|
|
debug!("match_impl: failed leak check due to `{}`",
|
|
|
|
ty::type_err_to_str(self.tcx(), &e));
|
|
|
|
return Err(());
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
2014-12-14 07:17:23 -05:00
|
|
|
|
|
|
|
debug!("match_impl: success impl_substs={}", impl_substs.repr(self.tcx()));
|
2015-04-19 23:38:37 +03:00
|
|
|
Ok((Normalized {
|
2015-02-24 09:50:36 +01:00
|
|
|
value: impl_substs,
|
|
|
|
obligations: impl_trait_ref.obligations
|
2015-04-19 23:38:37 +03:00
|
|
|
}, skol_map))
|
2014-10-09 17:19:50 -04:00
|
|
|
}
|
|
|
|
|
2014-11-16 07:10:37 -05:00
|
|
|
fn fast_reject_trait_refs(&mut self,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &TraitObligation,
|
2014-12-14 07:17:23 -05:00
|
|
|
impl_trait_ref: &ty::TraitRef)
|
2014-11-16 07:10:37 -05:00
|
|
|
-> bool
|
|
|
|
{
|
|
|
|
// We can avoid creating type variables and doing the full
|
|
|
|
// substitution if we find that any of the input types, when
|
|
|
|
// simplified, do not match.
|
|
|
|
|
2014-12-17 14:16:28 -05:00
|
|
|
obligation.predicate.0.input_types().iter()
|
2015-06-10 17:22:20 +01:00
|
|
|
.zip(impl_trait_ref.input_types())
|
2014-11-16 07:10:37 -05:00
|
|
|
.any(|(&obligation_ty, &impl_ty)| {
|
|
|
|
let simplified_obligation_ty =
|
|
|
|
fast_reject::simplify_type(self.tcx(), obligation_ty, true);
|
|
|
|
let simplified_impl_ty =
|
|
|
|
fast_reject::simplify_type(self.tcx(), impl_ty, false);
|
|
|
|
|
|
|
|
simplified_obligation_ty.is_some() &&
|
|
|
|
simplified_impl_ty.is_some() &&
|
|
|
|
simplified_obligation_ty != simplified_impl_ty
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
2015-01-08 21:41:42 -05:00
|
|
|
/// Normalize `where_clause_trait_ref` and try to match it against
|
|
|
|
/// `obligation`. If successful, return any predicates that
|
|
|
|
/// result from the normalization. Normalization is necessary
|
|
|
|
/// because where-clauses are stored in the parameter environment
|
|
|
|
/// unnormalized.
|
|
|
|
fn match_where_clause_trait_ref(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
|
|
|
|
-> Result<Vec<PredicateObligation<'tcx>>,()>
|
|
|
|
{
|
2015-02-24 09:50:36 +01:00
|
|
|
try!(self.match_poly_trait_ref(obligation, where_clause_trait_ref));
|
2015-01-26 14:20:38 -05:00
|
|
|
Ok(Vec::new())
|
2015-01-08 21:41:42 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns `Ok` if `poly_trait_ref` being true implies that the
|
|
|
|
/// obligation is satisfied.
|
2014-12-23 05:26:34 -05:00
|
|
|
fn match_poly_trait_ref(&mut self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
2015-01-08 21:41:42 -05:00
|
|
|
poly_trait_ref: ty::PolyTraitRef<'tcx>)
|
2014-12-23 05:26:34 -05:00
|
|
|
-> Result<(),()>
|
2014-10-09 17:19:50 -04:00
|
|
|
{
|
2015-01-08 21:41:42 -05:00
|
|
|
debug!("match_poly_trait_ref: obligation={} poly_trait_ref={}",
|
2014-10-17 08:51:43 -04:00
|
|
|
obligation.repr(self.tcx()),
|
2015-01-08 21:41:42 -05:00
|
|
|
poly_trait_ref.repr(self.tcx()));
|
2014-10-17 08:51:43 -04:00
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
|
2014-12-11 13:37:37 -05:00
|
|
|
match self.infcx.sub_poly_trait_refs(false,
|
|
|
|
origin,
|
2015-01-08 21:41:42 -05:00
|
|
|
poly_trait_ref,
|
2014-12-17 14:16:28 -05:00
|
|
|
obligation.predicate.to_poly_trait_ref()) {
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(()) => Ok(()),
|
|
|
|
Err(_) => Err(()),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-25 21:17:11 -05:00
|
|
|
/// Determines whether the self type declared against
|
|
|
|
/// `impl_def_id` matches `obligation_self_ty`. If successful,
|
|
|
|
/// returns the substitutions used to make them match. See
|
|
|
|
/// `match_impl()`. For example, if `impl_def_id` is declared
|
|
|
|
/// as:
|
|
|
|
///
|
2015-05-02 16:25:49 -04:00
|
|
|
/// impl<T:Copy> Foo for Box<T> { ... }
|
2014-11-25 21:17:11 -05:00
|
|
|
///
|
2015-05-02 16:25:49 -04:00
|
|
|
/// and `obligation_self_ty` is `int`, we'd get back an `Err(_)`
|
|
|
|
/// result. But if `obligation_self_ty` were `Box<int>`, we'd get
|
2014-11-25 21:17:11 -05:00
|
|
|
/// back `Ok(T=int)`.
|
2014-10-09 17:19:50 -04:00
|
|
|
fn match_inherent_impl(&mut self,
|
|
|
|
impl_def_id: ast::DefId,
|
2014-12-06 11:39:25 -05:00
|
|
|
obligation_cause: &ObligationCause,
|
2014-09-29 22:11:30 +03:00
|
|
|
obligation_self_ty: Ty<'tcx>)
|
|
|
|
-> Result<Substs<'tcx>,()>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
|
|
|
// Create fresh type variables for each type parameter declared
|
|
|
|
// on the impl etc.
|
2015-03-30 17:46:34 -04:00
|
|
|
let impl_substs = util::fresh_type_vars_for_impl(self.infcx,
|
|
|
|
obligation_cause.span,
|
|
|
|
impl_def_id);
|
2014-09-12 10:53:35 -04:00
|
|
|
|
|
|
|
// Find the self type for the impl.
|
|
|
|
let impl_self_ty = ty::lookup_item_type(self.tcx(), impl_def_id).ty;
|
|
|
|
let impl_self_ty = impl_self_ty.subst(self.tcx(), &impl_substs);
|
|
|
|
|
|
|
|
debug!("match_impl_self_types(obligation_self_ty={}, impl_self_ty={})",
|
|
|
|
obligation_self_ty.repr(self.tcx()),
|
|
|
|
impl_self_ty.repr(self.tcx()));
|
|
|
|
|
|
|
|
match self.match_self_types(obligation_cause,
|
|
|
|
impl_self_ty,
|
|
|
|
obligation_self_ty) {
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(()) => {
|
2014-09-12 10:53:35 -04:00
|
|
|
debug!("Matched impl_substs={}", impl_substs.repr(self.tcx()));
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(impl_substs)
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
2014-10-09 17:19:50 -04:00
|
|
|
Err(()) => {
|
2014-09-12 10:53:35 -04:00
|
|
|
debug!("NoMatch");
|
2014-10-09 17:19:50 -04:00
|
|
|
Err(())
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-18 11:08:04 -04:00
|
|
|
fn match_self_types(&mut self,
|
2014-12-06 11:39:25 -05:00
|
|
|
cause: &ObligationCause,
|
2014-09-12 10:53:35 -04:00
|
|
|
|
|
|
|
// The self type provided by the impl/caller-obligation:
|
2014-09-29 22:11:30 +03:00
|
|
|
provided_self_ty: Ty<'tcx>,
|
2014-09-12 10:53:35 -04:00
|
|
|
|
|
|
|
// The self type the obligation is for:
|
2014-09-29 22:11:30 +03:00
|
|
|
required_self_ty: Ty<'tcx>)
|
2014-10-09 17:19:50 -04:00
|
|
|
-> Result<(),()>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
|
|
|
// FIXME(#5781) -- equating the types is stronger than
|
|
|
|
// necessary. Should consider variance of trait w/r/t Self.
|
|
|
|
|
|
|
|
let origin = infer::RelateSelfType(cause.span);
|
|
|
|
match self.infcx.eq_types(false,
|
|
|
|
origin,
|
|
|
|
provided_self_ty,
|
|
|
|
required_self_ty) {
|
2014-10-09 17:19:50 -04:00
|
|
|
Ok(()) => Ok(()),
|
|
|
|
Err(_) => Err(()),
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// Miscellany
|
|
|
|
|
2015-03-20 08:17:09 -04:00
|
|
|
fn match_fresh_trait_refs(&self,
|
|
|
|
previous: &ty::PolyTraitRef<'tcx>,
|
|
|
|
current: &ty::PolyTraitRef<'tcx>)
|
|
|
|
-> bool
|
|
|
|
{
|
|
|
|
let mut matcher = ty_match::Match::new(self.tcx());
|
|
|
|
matcher.relate(previous, current).is_ok()
|
|
|
|
}
|
|
|
|
|
2014-10-09 17:19:50 -04:00
|
|
|
fn push_stack<'o,'s:'o>(&mut self,
|
2015-03-30 17:46:34 -04:00
|
|
|
previous_stack: TraitObligationStackList<'s, 'tcx>,
|
2014-12-05 00:03:03 -05:00
|
|
|
obligation: &'o TraitObligation<'tcx>)
|
|
|
|
-> TraitObligationStack<'o, 'tcx>
|
2014-09-18 11:08:04 -04:00
|
|
|
{
|
2014-12-17 14:16:28 -05:00
|
|
|
let fresh_trait_ref =
|
|
|
|
obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
|
2014-10-09 17:19:50 -04:00
|
|
|
|
2014-12-05 00:03:03 -05:00
|
|
|
TraitObligationStack {
|
2014-09-18 11:08:04 -04:00
|
|
|
obligation: obligation,
|
2014-12-12 06:13:42 -05:00
|
|
|
fresh_trait_ref: fresh_trait_ref,
|
2015-03-30 17:46:34 -04:00
|
|
|
previous: previous_stack,
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-10 11:54:15 -05:00
|
|
|
fn closure_trait_ref(&self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
|
|
|
closure_def_id: ast::DefId,
|
|
|
|
substs: &Substs<'tcx>)
|
|
|
|
-> ty::PolyTraitRef<'tcx>
|
|
|
|
{
|
|
|
|
let closure_type = self.closure_typer.closure_type(closure_def_id, substs);
|
|
|
|
let ty::Binder((trait_ref, _)) =
|
|
|
|
util::closure_trait_ref_and_return_type(self.tcx(),
|
|
|
|
obligation.predicate.def_id(),
|
|
|
|
obligation.predicate.0.self_ty(), // (1)
|
|
|
|
&closure_type.sig,
|
|
|
|
util::TupleArgumentsFlag::No);
|
|
|
|
|
|
|
|
// (1) Feels icky to skip the binder here, but OTOH we know
|
|
|
|
// that the self-type is an unboxed closure type and hence is
|
|
|
|
// in fact unparameterized (or at least does not reference any
|
|
|
|
// regions bound in the obligation). Still probably some
|
|
|
|
// refactoring could make this nicer.
|
|
|
|
|
|
|
|
ty::Binder(trait_ref)
|
|
|
|
}
|
|
|
|
|
2015-02-19 10:30:45 -05:00
|
|
|
/// Returns the obligations that are implied by instantiating an
|
|
|
|
/// impl or trait. The obligations are substituted and fully
|
|
|
|
/// normalized. This is used when confirming an impl or default
|
|
|
|
/// impl.
|
|
|
|
fn impl_or_trait_obligations(&mut self,
|
|
|
|
cause: ObligationCause<'tcx>,
|
2015-03-25 17:06:52 -07:00
|
|
|
recursion_depth: usize,
|
2015-02-19 10:30:45 -05:00
|
|
|
def_id: ast::DefId, // of impl or trait
|
|
|
|
substs: &Substs<'tcx>, // for impl or trait
|
|
|
|
skol_map: infer::SkolemizationMap,
|
|
|
|
snapshot: &infer::CombinedSnapshot)
|
2015-06-03 02:14:45 +03:00
|
|
|
-> Vec<PredicateObligation<'tcx>>
|
2014-09-12 10:53:35 -04:00
|
|
|
{
|
2015-03-26 15:53:00 -04:00
|
|
|
debug!("impl_or_trait_obligations(def_id={})", def_id.repr(self.tcx()));
|
|
|
|
|
2015-02-19 10:30:45 -05:00
|
|
|
let predicates = ty::lookup_predicates(self.tcx(), def_id);
|
|
|
|
let predicates = predicates.instantiate(self.tcx(), substs);
|
|
|
|
let predicates = normalize_with_depth(self, cause.clone(), recursion_depth, &predicates);
|
2015-06-03 02:14:45 +03:00
|
|
|
let mut predicates = self.infcx().plug_leaks(skol_map, snapshot, &predicates);
|
2015-02-19 10:30:45 -05:00
|
|
|
let mut obligations =
|
2015-01-01 13:15:14 -05:00
|
|
|
util::predicates_for_generics(self.tcx(),
|
|
|
|
cause,
|
|
|
|
recursion_depth,
|
2015-02-19 10:30:45 -05:00
|
|
|
&predicates.value);
|
2015-06-03 02:14:45 +03:00
|
|
|
obligations.append(&mut predicates.obligations);
|
2015-02-19 10:30:45 -05:00
|
|
|
obligations
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
2014-12-01 09:23:40 -05:00
|
|
|
|
2014-12-23 10:57:44 +01:00
|
|
|
#[allow(unused_comparisons)]
|
2014-12-06 11:39:25 -05:00
|
|
|
fn derived_cause(&self,
|
|
|
|
obligation: &TraitObligation<'tcx>,
|
2014-12-17 14:16:28 -05:00
|
|
|
variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
|
2014-12-06 11:39:25 -05:00
|
|
|
-> ObligationCause<'tcx>
|
|
|
|
{
|
|
|
|
/*!
|
|
|
|
* Creates a cause for obligations that are derived from
|
|
|
|
* `obligation` by a recursive search (e.g., for a builtin
|
|
|
|
* bound, or eventually a `impl Foo for ..`). If `obligation`
|
|
|
|
* is itself a derived obligation, this is just a clone, but
|
|
|
|
* otherwise we create a "derived obligation" cause so as to
|
|
|
|
* keep track of the original root obligation for error
|
|
|
|
* reporting.
|
|
|
|
*/
|
|
|
|
|
2014-12-23 10:57:44 +01:00
|
|
|
// NOTE(flaper87): As of now, it keeps track of the whole error
|
|
|
|
// chain. Ideally, we should have a way to configure this either
|
|
|
|
// by using -Z verbose or just a CLI argument.
|
|
|
|
if obligation.recursion_depth >= 0 {
|
2014-12-17 14:16:28 -05:00
|
|
|
let derived_cause = DerivedObligationCause {
|
|
|
|
parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
|
|
|
|
parent_code: Rc::new(obligation.cause.code.clone()),
|
|
|
|
};
|
2014-12-06 11:39:25 -05:00
|
|
|
ObligationCause::new(obligation.cause.span,
|
2014-12-17 14:16:28 -05:00
|
|
|
obligation.cause.body_id,
|
|
|
|
variant(derived_cause))
|
2014-12-06 11:39:25 -05:00
|
|
|
} else {
|
|
|
|
obligation.cause.clone()
|
|
|
|
}
|
|
|
|
}
|
2015-03-03 08:01:13 -05:00
|
|
|
|
|
|
|
/// Upcasts an object trait-reference into those that match the obligation.
|
|
|
|
fn upcast(&mut self, obj_trait_ref: ty::PolyTraitRef<'tcx>, obligation: &TraitObligation<'tcx>)
|
|
|
|
-> Vec<ty::PolyTraitRef<'tcx>>
|
|
|
|
{
|
|
|
|
debug!("upcast(obj_trait_ref={}, obligation={})",
|
|
|
|
obj_trait_ref.repr(self.tcx()),
|
|
|
|
obligation.repr(self.tcx()));
|
|
|
|
|
|
|
|
let obligation_def_id = obligation.predicate.def_id();
|
|
|
|
let mut upcast_trait_refs = util::upcast(self.tcx(), obj_trait_ref, obligation_def_id);
|
|
|
|
|
2015-03-05 05:46:12 -05:00
|
|
|
// Retain only those upcast versions that match the trait-ref
|
|
|
|
// we are looking for. In particular, we know that all of
|
|
|
|
// `upcast_trait_refs` apply to the correct trait, but
|
|
|
|
// possibly with incorrect type parameters. For example, we
|
|
|
|
// may be trying to upcast `Foo` to `Bar<i32>`, but `Foo` is
|
|
|
|
// declared as `trait Foo : Bar<u32>`.
|
2015-03-03 08:01:13 -05:00
|
|
|
upcast_trait_refs.retain(|upcast_trait_ref| {
|
|
|
|
let upcast_trait_ref = upcast_trait_ref.clone();
|
|
|
|
self.infcx.probe(|_| self.match_poly_trait_ref(obligation, upcast_trait_ref)).is_ok()
|
|
|
|
});
|
|
|
|
|
|
|
|
debug!("upcast: upcast_trait_refs={}", upcast_trait_refs.repr(self.tcx()));
|
|
|
|
upcast_trait_refs
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
|
2014-12-17 14:16:28 -05:00
|
|
|
impl<'tcx> Repr<'tcx> for SelectionCandidate<'tcx> {
|
2014-09-29 22:11:30 +03:00
|
|
|
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
|
2014-09-12 10:53:35 -04:00
|
|
|
match *self {
|
2015-02-12 05:16:02 -05:00
|
|
|
PhantomFnCandidate => format!("PhantomFnCandidate"),
|
2014-09-18 11:08:04 -04:00
|
|
|
ErrorCandidate => format!("ErrorCandidate"),
|
2014-12-20 00:09:35 -08:00
|
|
|
BuiltinCandidate(b) => format!("BuiltinCandidate({:?})", b),
|
2015-02-18 11:58:44 -05:00
|
|
|
BuiltinObjectCandidate => format!("BuiltinObjectCandidate"),
|
2015-04-15 11:57:29 +12:00
|
|
|
BuiltinUnsizeCandidate => format!("BuiltinUnsizeCandidate"),
|
2014-12-27 04:22:29 -05:00
|
|
|
ParamCandidate(ref a) => format!("ParamCandidate({})", a.repr(tcx)),
|
|
|
|
ImplCandidate(a) => format!("ImplCandidate({})", a.repr(tcx)),
|
2015-02-07 14:24:34 +01:00
|
|
|
DefaultImplCandidate(t) => format!("DefaultImplCandidate({:?})", t),
|
2015-03-24 15:55:29 -04:00
|
|
|
DefaultImplObjectCandidate(t) => format!("DefaultImplObjectCandidate({:?})", t),
|
2014-12-27 04:22:29 -05:00
|
|
|
ProjectionCandidate => format!("ProjectionCandidate"),
|
|
|
|
FnPointerCandidate => format!("FnPointerCandidate"),
|
2015-02-24 09:50:36 +01:00
|
|
|
ObjectCandidate => format!("ObjectCandidate"),
|
2015-01-24 22:00:03 +02:00
|
|
|
ClosureCandidate(c, ref s) => {
|
|
|
|
format!("ClosureCandidate({:?},{})", c, s.repr(tcx))
|
2014-12-01 09:23:40 -05:00
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-09-29 22:11:30 +03:00
|
|
|
impl<'tcx> SelectionCache<'tcx> {
|
|
|
|
pub fn new() -> SelectionCache<'tcx> {
|
2014-09-17 16:12:02 -04:00
|
|
|
SelectionCache {
|
2015-03-18 07:54:31 -04:00
|
|
|
hashmap: RefCell::new(FnvHashMap())
|
2014-09-17 16:12:02 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
impl<'o,'tcx> TraitObligationStack<'o,'tcx> {
|
|
|
|
fn list(&'o self) -> TraitObligationStackList<'o,'tcx> {
|
|
|
|
TraitObligationStackList::with(self)
|
|
|
|
}
|
|
|
|
|
|
|
|
fn iter(&'o self) -> TraitObligationStackList<'o,'tcx> {
|
|
|
|
self.list()
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
#[derive(Copy, Clone)]
|
|
|
|
struct TraitObligationStackList<'o,'tcx:'o> {
|
|
|
|
head: Option<&'o TraitObligationStack<'o,'tcx>>
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'o,'tcx> TraitObligationStackList<'o,'tcx> {
|
|
|
|
fn empty() -> TraitObligationStackList<'o,'tcx> {
|
|
|
|
TraitObligationStackList { head: None }
|
|
|
|
}
|
|
|
|
|
|
|
|
fn with(r: &'o TraitObligationStack<'o,'tcx>) -> TraitObligationStackList<'o,'tcx> {
|
|
|
|
TraitObligationStackList { head: Some(r) }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'o,'tcx> Iterator for TraitObligationStackList<'o,'tcx>{
|
2015-01-01 23:26:38 -05:00
|
|
|
type Item = &'o TraitObligationStack<'o,'tcx>;
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
fn next(&mut self) -> Option<&'o TraitObligationStack<'o,'tcx>> {
|
|
|
|
match self.head {
|
2014-09-18 11:08:04 -04:00
|
|
|
Some(o) => {
|
|
|
|
*self = o.previous;
|
|
|
|
Some(o)
|
|
|
|
}
|
2015-02-24 09:50:36 +01:00
|
|
|
None => None
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-03-30 17:46:34 -04:00
|
|
|
impl<'o,'tcx> Repr<'tcx> for TraitObligationStack<'o,'tcx> {
|
2014-09-29 22:11:30 +03:00
|
|
|
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
|
2014-12-05 00:03:03 -05:00
|
|
|
format!("TraitObligationStack({})",
|
2014-10-09 17:19:50 -04:00
|
|
|
self.obligation.repr(tcx))
|
2014-09-18 11:08:04 -04:00
|
|
|
}
|
|
|
|
}
|
2014-09-12 10:53:35 -04:00
|
|
|
|
2014-12-02 14:04:10 -05:00
|
|
|
impl<'tcx> EvaluationResult<'tcx> {
|
2014-10-09 17:19:50 -04:00
|
|
|
fn may_apply(&self) -> bool {
|
|
|
|
match *self {
|
2015-03-20 06:48:40 -04:00
|
|
|
EvaluatedToOk |
|
|
|
|
EvaluatedToAmbig |
|
2015-04-15 11:57:29 +12:00
|
|
|
EvaluatedToErr(OutputTypeParameterMismatch(..)) |
|
|
|
|
EvaluatedToErr(TraitNotObjectSafe(_)) =>
|
2015-03-20 06:48:40 -04:00
|
|
|
true,
|
|
|
|
|
|
|
|
EvaluatedToErr(Unimplemented) =>
|
|
|
|
false,
|
2014-09-17 16:12:02 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2014-10-17 08:51:43 -04:00
|
|
|
|
|
|
|
impl MethodMatchResult {
|
|
|
|
pub fn may_apply(&self) -> bool {
|
|
|
|
match *self {
|
|
|
|
MethodMatched(_) => true,
|
|
|
|
MethodAmbiguous(_) => true,
|
|
|
|
MethodDidNotMatch => false,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|