rust/src/helpers.rs

748 lines
31 KiB
Rust
Raw Normal View History

use std::ffi::{OsStr, OsString};
use std::path::{Path, PathBuf};
2019-12-23 05:56:23 -06:00
use std::{iter, mem};
use std::convert::TryFrom;
use std::borrow::Cow;
2018-05-01 11:13:22 -05:00
#[cfg(unix)]
use std::os::unix::ffi::{OsStrExt, OsStringExt};
#[cfg(windows)]
use std::os::windows::ffi::{OsStrExt, OsStringExt};
2019-07-21 04:56:10 -05:00
use rustc::mir;
2019-10-08 15:06:14 -05:00
use rustc::ty::{
self,
layout::{self, LayoutOf, Size, TyLayout},
2019-12-23 05:56:23 -06:00
List, TyCtxt,
2019-10-08 15:06:14 -05:00
};
2020-03-01 03:26:24 -06:00
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
2020-01-05 02:53:45 -06:00
use rustc_span::source_map::DUMMY_SP;
2018-10-19 02:51:04 -05:00
2019-06-30 16:28:24 -05:00
use rand::RngCore;
2018-11-01 02:56:41 -05:00
use crate::*;
2018-10-19 02:51:04 -05:00
2019-06-13 01:52:04 -05:00
impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
2019-02-15 19:29:38 -06:00
/// Gets an instance for a path.
fn try_resolve_did<'mir, 'tcx>(tcx: TyCtxt<'tcx>, path: &[&str]) -> Option<DefId> {
2019-12-23 05:56:23 -06:00
tcx.crates()
.iter()
.find(|&&krate| tcx.original_crate_name(krate).as_str() == path[0])
.and_then(|krate| {
2019-12-23 05:56:23 -06:00
let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX };
let mut items = tcx.item_children(krate);
let mut path_it = path.iter().skip(1).peekable();
2018-10-19 02:51:04 -05:00
while let Some(segment) = path_it.next() {
for item in mem::replace(&mut items, Default::default()).iter() {
if item.ident.name.as_str() == *segment {
if path_it.peek().is_none() {
2019-12-23 05:56:23 -06:00
return Some(item.res.def_id());
2018-10-19 02:51:04 -05:00
}
items = tcx.item_children(item.res.def_id());
break;
2018-10-19 02:51:04 -05:00
}
}
}
None
})
}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
2019-11-19 07:51:08 -06:00
/// Gets an instance for a path.
fn resolve_path(&self, path: &[&str]) -> ty::Instance<'tcx> {
let did = try_resolve_did(self.eval_context_ref().tcx.tcx, path)
.unwrap_or_else(|| panic!("failed to find required Rust item: {:?}", path));
ty::Instance::mono(self.eval_context_ref().tcx.tcx, did)
}
/// Evaluates the scalar at the specified path. Returns Some(val)
/// if the path could be resolved, and None otherwise
fn eval_path_scalar(
&mut self,
path: &[&str],
) -> InterpResult<'tcx, ScalarMaybeUndef<Tag>> {
let this = self.eval_context_mut();
let instance = this.resolve_path(path);
let cid = GlobalId { instance, promoted: None };
let const_val = this.const_eval_raw(cid)?;
let const_val = this.read_scalar(const_val.into())?;
return Ok(const_val);
}
/// Helper function to get a `libc` constant as a `Scalar`.
fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
self.eval_context_mut()
.eval_path_scalar(&["libc", name])?
.not_undef()
}
/// Helper function to get a `libc` constant as an `i32`.
fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
self.eval_libc(name)?.to_i32()
}
/// Helper function to get the `TyLayout` of a `libc` type
fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyLayout<'tcx>> {
let this = self.eval_context_mut();
let ty = this.resolve_path(&["libc", name]).monomorphic_ty(*this.tcx);
this.layout_of(ty)
2018-10-19 02:51:04 -05:00
}
/// Write a 0 of the appropriate size to `dest`.
fn write_null(&mut self, dest: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
self.eval_context_mut().write_scalar(Scalar::from_int(0, dest.layout.size), dest)
}
/// Test if this immediate equals 0.
fn is_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, bool> {
let this = self.eval_context_ref();
2019-10-17 21:11:50 -05:00
let null = Scalar::from_int(0, this.memory.pointer_size());
this.ptr_eq(val, null)
}
/// Turn a Scalar into an Option<NonNullScalar>
fn test_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, Option<Scalar<Tag>>> {
let this = self.eval_context_ref();
2019-12-23 05:56:23 -06:00
Ok(if this.is_null(val)? { None } else { Some(val) })
}
2019-07-21 04:56:10 -05:00
/// Get the `Place` for a local
fn local_place(&mut self, local: mir::Local) -> InterpResult<'tcx, PlaceTy<'tcx, Tag>> {
let this = self.eval_context_mut();
2020-01-15 12:27:21 -06:00
let place = mir::Place { local: local, projection: List::empty() };
2019-07-21 04:56:10 -05:00
this.eval_place(&place)
}
2019-06-30 16:28:24 -05:00
/// Generate some random bytes, and write them to `dest`.
fn gen_random(&mut self, ptr: Scalar<Tag>, len: u64) -> InterpResult<'tcx> {
// Some programs pass in a null pointer and a length of 0
// to their platform's random-generation function (e.g. getrandom())
// on Linux. For compatibility with these programs, we don't perform
// any additional checks - it's okay if the pointer is invalid,
// since we wouldn't actually be writing to it.
if len == 0 {
return Ok(());
}
2019-06-30 16:28:24 -05:00
let this = self.eval_context_mut();
2019-06-30 16:32:25 -05:00
let mut data = vec![0; usize::try_from(len).unwrap()];
if this.machine.communicate {
// Fill the buffer using the host's rng.
2019-08-20 10:47:38 -05:00
getrandom::getrandom(&mut data)
.map_err(|err| err_unsup_format!("host getrandom failed: {}", err))?;
2019-12-23 05:56:23 -06:00
} else {
2019-10-17 21:11:50 -05:00
let rng = this.memory.extra.rng.get_mut();
rng.fill_bytes(&mut data);
}
2019-07-23 14:38:53 -05:00
this.memory.write_bytes(ptr, data.iter().copied())
2019-06-30 16:28:24 -05:00
}
/// Call a function: Push the stack frame and pass the arguments.
/// For now, arguments must be scalars (so that the caller does not have to know the layout).
fn call_function(
&mut self,
f: ty::Instance<'tcx>,
args: &[Immediate<Tag>],
dest: Option<PlaceTy<'tcx, Tag>>,
stack_pop: StackPopCleanup,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Push frame.
2019-12-08 03:32:50 -06:00
let mir = &*this.load_mir(f.def, None)?;
2019-12-23 05:56:23 -06:00
let span = this
.stack()
.last()
.and_then(Frame::current_source_info)
.map(|si| si.span)
.unwrap_or(DUMMY_SP);
2019-12-23 05:56:23 -06:00
this.push_stack_frame(f, span, mir, dest, stack_pop)?;
// Initialize arguments.
let mut callee_args = this.frame().body.args_iter();
for arg in args {
let callee_arg = this.local_place(
2019-12-23 05:56:23 -06:00
callee_args.next().expect("callee has fewer arguments than expected"),
)?;
this.write_immediate(*arg, callee_arg)?;
}
callee_args.next().expect_none("callee has more arguments than expected");
Ok(())
}
2019-02-15 19:29:38 -06:00
/// Visits the memory covered by `place`, sensitive to freezing: the 3rd parameter
/// will be true if this is frozen, false if this is in an `UnsafeCell`.
fn visit_freeze_sensitive(
&self,
place: MPlaceTy<'tcx, Tag>,
size: Size,
2019-06-08 15:14:47 -05:00
mut action: impl FnMut(Pointer<Tag>, Size, bool) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
trace!("visit_frozen(place={:?}, size={:?})", *place, size);
2019-12-23 05:56:23 -06:00
debug_assert_eq!(
size,
this.size_and_align_of_mplace(place)?
2019-12-23 05:56:23 -06:00
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size)
);
2019-02-15 19:29:38 -06:00
// Store how far we proceeded into the place so far. Everything to the left of
// this offset has already been handled, in the sense that the frozen parts
// have had `action` called on them.
let mut end_ptr = place.ptr.assert_ptr();
// Called when we detected an `UnsafeCell` at the given offset and size.
// Calls `action` and advances `end_ptr`.
let mut unsafe_cell_action = |unsafe_cell_ptr: Scalar<Tag>, unsafe_cell_size: Size| {
let unsafe_cell_ptr = unsafe_cell_ptr.assert_ptr();
debug_assert_eq!(unsafe_cell_ptr.alloc_id, end_ptr.alloc_id);
debug_assert_eq!(unsafe_cell_ptr.tag, end_ptr.tag);
// We assume that we are given the fields in increasing offset order,
// and nothing else changes.
let unsafe_cell_offset = unsafe_cell_ptr.offset;
let end_offset = end_ptr.offset;
assert!(unsafe_cell_offset >= end_offset);
let frozen_size = unsafe_cell_offset - end_offset;
// Everything between the end_ptr and this `UnsafeCell` is frozen.
if frozen_size != Size::ZERO {
2019-12-23 05:56:23 -06:00
action(end_ptr, frozen_size, /*frozen*/ true)?;
}
// This `UnsafeCell` is NOT frozen.
if unsafe_cell_size != Size::ZERO {
2019-12-23 05:56:23 -06:00
action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/ false)?;
}
// Update end end_ptr.
end_ptr = unsafe_cell_ptr.wrapping_offset(unsafe_cell_size, this);
// Done
Ok(())
};
// Run a visitor
{
let mut visitor = UnsafeCellVisitor {
ecx: this,
unsafe_cell_action: |place| {
trace!("unsafe_cell_action on {:?}", place.ptr);
// We need a size to go on.
2019-12-23 05:56:23 -06:00
let unsafe_cell_size = this
.size_and_align_of_mplace(place)?
2018-11-23 02:46:51 -06:00
.map(|(size, _)| size)
// for extern types, just cover what we can
2018-11-23 02:46:51 -06:00
.unwrap_or_else(|| place.layout.size);
2018-11-06 10:46:54 -06:00
// Now handle this `UnsafeCell`, unless it is empty.
if unsafe_cell_size != Size::ZERO {
unsafe_cell_action(place.ptr, unsafe_cell_size)
2018-11-06 10:46:54 -06:00
} else {
Ok(())
}
},
};
visitor.visit_value(place)?;
}
// The part between the end_ptr and the end of the place is also frozen.
// So pretend there is a 0-sized `UnsafeCell` at the end.
unsafe_cell_action(place.ptr.ptr_wrapping_offset(size, this), Size::ZERO)?;
// Done!
return Ok(());
/// Visiting the memory covered by a `MemPlace`, being aware of
/// whether we are inside an `UnsafeCell` or not.
2019-06-13 01:52:04 -05:00
struct UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
2019-12-23 05:56:23 -06:00
where
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
2019-06-13 01:52:04 -05:00
ecx: &'ecx MiriEvalContext<'mir, 'tcx>,
unsafe_cell_action: F,
}
2019-12-23 05:56:23 -06:00
impl<'ecx, 'mir, 'tcx, F> ValueVisitor<'mir, 'tcx, Evaluator<'tcx>>
for UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
where
2019-12-23 05:56:23 -06:00
F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
type V = MPlaceTy<'tcx, Tag>;
#[inline(always)]
2019-06-13 01:52:04 -05:00
fn ecx(&self) -> &MiriEvalContext<'mir, 'tcx> {
&self.ecx
}
2019-02-15 19:29:38 -06:00
// Hook to detect `UnsafeCell`.
2019-12-23 05:56:23 -06:00
fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
2019-09-26 04:40:13 -05:00
let is_unsafe_cell = match v.layout.ty.kind {
2019-12-23 05:56:23 -06:00
ty::Adt(adt, _) =>
Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(),
_ => false,
};
if is_unsafe_cell {
// We do not have to recurse further, this is an `UnsafeCell`.
(self.unsafe_cell_action)(v)
} else if self.ecx.type_is_freeze(v.layout.ty) {
// This is `Freeze`, there cannot be an `UnsafeCell`
Ok(())
} else {
// We want to not actually read from memory for this visit. So, before
// walking this value, we have to make sure it is not a
// `Variants::Multiple`.
match v.layout.variants {
layout::Variants::Multiple { .. } => {
// A multi-variant enum, or generator, or so.
// Treat this like a union: without reading from memory,
// we cannot determine the variant we are in. Reading from
// memory would be subject to Stacked Borrows rules, leading
// to all sorts of "funny" recursion.
2019-08-28 11:45:10 -05:00
// We only end up here if the type is *not* freeze, so we just call the
// `UnsafeCell` action.
(self.unsafe_cell_action)(v)
}
layout::Variants::Single { .. } => {
2019-08-28 11:45:10 -05:00
// Proceed further, try to find where exactly that `UnsafeCell`
// is hiding.
self.walk_value(v)
}
}
}
}
2019-02-15 19:29:38 -06:00
// Make sure we visit aggregrates in increasing offset order.
2018-11-06 10:46:54 -06:00
fn visit_aggregate(
&mut self,
place: MPlaceTy<'tcx, Tag>,
2019-12-23 05:56:23 -06:00
fields: impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>>,
2019-06-08 15:14:47 -05:00
) -> InterpResult<'tcx> {
2018-11-06 10:46:54 -06:00
match place.layout.fields {
layout::FieldPlacement::Array { .. } => {
// For the array layout, we know the iterator will yield sorted elements so
// we can avoid the allocation.
self.walk_aggregate(place, fields)
}
layout::FieldPlacement::Arbitrary { .. } => {
// Gather the subplaces and sort them before visiting.
2019-12-23 05:56:23 -06:00
let mut places =
fields.collect::<InterpResult<'tcx, Vec<MPlaceTy<'tcx, Tag>>>>()?;
places.sort_by_key(|place| place.ptr.assert_ptr().offset);
2018-11-06 10:46:54 -06:00
self.walk_aggregate(place, places.into_iter().map(Ok))
}
layout::FieldPlacement::Union { .. } => {
// Uh, what?
2019-02-15 19:29:38 -06:00
bug!("a union is not an aggregate we should ever visit")
2018-11-06 10:46:54 -06:00
}
}
}
2019-02-15 19:29:38 -06:00
// We have to do *something* for unions.
2020-02-18 02:32:02 -06:00
fn visit_union(&mut self, v: MPlaceTy<'tcx, Tag>, fields: usize) -> InterpResult<'tcx> {
assert!(fields > 0); // we should never reach "pseudo-unions" with 0 fields, like primitives
// With unions, we fall back to whatever the type says, to hopefully be consistent
// with LLVM IR.
2019-02-15 19:29:38 -06:00
// FIXME: are we consistent, and is this really the behavior we want?
let frozen = self.ecx.type_is_freeze(v.layout.ty);
2019-12-23 05:56:23 -06:00
if frozen { Ok(()) } else { (self.unsafe_cell_action)(v) }
}
}
}
2019-10-11 04:17:43 -05:00
// Writes several `ImmTy`s contiguosly into memory. This is useful when you have to pack
2019-10-12 19:48:18 -05:00
// different values into a struct.
fn write_packed_immediates(
2019-10-08 15:06:14 -05:00
&mut self,
place: MPlaceTy<'tcx, Tag>,
imms: &[ImmTy<'tcx, Tag>],
2019-10-08 15:06:14 -05:00
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let mut offset = Size::from_bytes(0);
for &imm in imms {
this.write_immediate_to_mplace(
*imm,
2020-01-15 12:27:21 -06:00
place.offset(offset, MemPlaceMeta::None, imm.layout, &*this.tcx)?,
2019-10-08 15:06:14 -05:00
)?;
offset += imm.layout.size;
2019-10-08 15:06:14 -05:00
}
Ok(())
}
2019-10-08 15:06:14 -05:00
/// Helper function used inside the shims of foreign functions to check that isolation is
/// disabled. It returns an error using the `name` of the foreign function if this is not the
/// case.
2020-02-23 11:44:40 -06:00
fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> {
if !self.eval_context_ref().machine.communicate {
throw_machine_stop!(TerminationInfo::UnsupportedInIsolation(format!(
"`{}` not available when isolation is enabled",
2020-02-23 11:44:40 -06:00
name,
)))
}
2019-10-08 15:06:14 -05:00
Ok(())
}
2020-03-22 02:51:15 -05:00
/// Helper function used inside the shims of foreign functions to assert that the target OS
/// is `target_os`. It panics showing a message with the `name` of the foreign function
/// if this is not the case.
2020-03-22 02:51:15 -05:00
fn assert_target_os(&self, target_os: &str, name: &str) {
assert_eq!(
2020-02-23 11:54:08 -06:00
self.eval_context_ref().tcx.sess.target.target.target_os,
2020-03-22 02:51:15 -05:00
target_os,
"`{}` is only available on the `{}` target OS",
name,
2020-03-22 02:51:15 -05:00
target_os,
)
}
2019-10-19 14:00:44 -05:00
/// Sets the last error variable.
2019-10-12 20:44:45 -05:00
fn set_last_error(&mut self, scalar: Scalar<Tag>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
2019-10-12 20:58:02 -05:00
let errno_place = this.machine.last_error.unwrap();
this.write_scalar(scalar, errno_place.into())
2019-10-12 20:44:45 -05:00
}
2019-10-19 14:00:44 -05:00
/// Gets the last error variable.
2020-02-23 11:44:40 -06:00
fn get_last_error(&self) -> InterpResult<'tcx, Scalar<Tag>> {
let this = self.eval_context_ref();
2019-10-12 20:58:02 -05:00
let errno_place = this.machine.last_error.unwrap();
this.read_scalar(errno_place.into())?.not_undef()
2019-10-12 20:44:45 -05:00
}
2019-10-18 14:33:25 -05:00
/// Sets the last OS error using a `std::io::Error`. This function tries to produce the most
/// similar OS error from the `std::io::ErrorKind` and sets it as the last OS error.
2019-10-12 20:44:45 -05:00
fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'tcx> {
use std::io::ErrorKind::*;
let this = self.eval_context_mut();
let target = &this.tcx.tcx.sess.target.target;
let last_error = if target.options.target_family == Some("unix".to_owned()) {
this.eval_libc(match e.kind() {
ConnectionRefused => "ECONNREFUSED",
ConnectionReset => "ECONNRESET",
PermissionDenied => "EPERM",
BrokenPipe => "EPIPE",
NotConnected => "ENOTCONN",
ConnectionAborted => "ECONNABORTED",
AddrNotAvailable => "EADDRNOTAVAIL",
AddrInUse => "EADDRINUSE",
NotFound => "ENOENT",
Interrupted => "EINTR",
InvalidInput => "EINVAL",
TimedOut => "ETIMEDOUT",
AlreadyExists => "EEXIST",
WouldBlock => "EWOULDBLOCK",
2019-12-23 05:56:23 -06:00
_ => {
2020-03-09 03:43:20 -05:00
throw_unsup_format!("io error {} cannot be transformed into a raw os error", e)
2019-12-23 05:56:23 -06:00
}
})?
} else {
2019-10-24 03:23:44 -05:00
// FIXME: we have to implement the Windows equivalent of this.
2019-12-23 05:56:23 -06:00
throw_unsup_format!(
2020-03-09 03:43:20 -05:00
"setting the last OS error from an io::Error is unsupported for {}.",
2019-12-23 05:56:23 -06:00
target.target_os
)
};
this.set_last_error(last_error)
2019-10-12 20:44:45 -05:00
}
2019-10-16 21:37:35 -05:00
/// Helper function that consumes an `std::io::Result<T>` and returns an
2019-10-18 14:33:25 -05:00
/// `InterpResult<'tcx,T>::Ok` instead. In case the result is an error, this function returns
/// `Ok(-1)` and sets the last OS error accordingly.
2019-10-16 21:37:35 -05:00
///
/// This function uses `T: From<i32>` instead of `i32` directly because some IO related
2019-10-24 03:23:44 -05:00
/// functions return different integer types (like `read`, that returns an `i64`).
2019-10-18 14:33:25 -05:00
fn try_unwrap_io_result<T: From<i32>>(
2019-10-16 21:37:35 -05:00
&mut self,
result: std::io::Result<T>,
) -> InterpResult<'tcx, T> {
match result {
Ok(ok) => Ok(ok),
Err(e) => {
self.eval_context_mut().set_last_error_from_io_error(e)?;
Ok((-1).into())
}
}
}
2019-10-21 08:49:49 -05:00
/// Dispatches to appropriate implementations for reading an OsString from Memory,
/// depending on the interpretation target.
/// FIXME: Use `Cow` to avoid copies
fn read_os_str_from_target_str(&self, scalar: Scalar<Tag>) -> InterpResult<'tcx, OsString> {
let target_os = self.eval_context_ref().tcx.sess.target.target.target_os.as_str();
match target_os {
"linux" | "macos" => self.read_os_str_from_c_str(scalar).map(|x| x.to_os_string()),
"windows" => self.read_os_str_from_wide_str(scalar),
unsupported => throw_unsup_format!("OsString support for target OS `{}` not yet available", unsupported),
}
}
2019-10-20 17:40:21 -05:00
/// Helper function to read an OsString from a null-terminated sequence of bytes, which is what
/// the Unix APIs usually handle.
2019-12-04 03:43:36 -06:00
fn read_os_str_from_c_str<'a>(&'a self, scalar: Scalar<Tag>) -> InterpResult<'tcx, &'a OsStr>
2019-12-23 05:56:23 -06:00
where
'tcx: 'a,
'mir: 'a,
{
#[cfg(unix)]
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
Ok(OsStr::from_bytes(bytes))
}
#[cfg(not(unix))]
fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> {
let s = std::str::from_utf8(bytes)
.map_err(|_| err_unsup_format!("{:?} is not a valid utf-8 string", bytes))?;
Ok(OsStr::new(s))
}
let this = self.eval_context_ref();
let bytes = this.memory.read_c_str(scalar)?;
bytes_to_os_str(bytes)
}
/// Helper function to read an OsString from a 0x0000-terminated sequence of u16,
/// which is what the Windows APIs usually handle.
fn read_os_str_from_wide_str<'a>(&'a self, scalar: Scalar<Tag>) -> InterpResult<'tcx, OsString>
where
'tcx: 'a,
'mir: 'a,
{
#[cfg(windows)]
pub fn u16vec_to_osstring<'tcx, 'a>(u16_vec: Vec<u16>) -> InterpResult<'tcx, OsString> {
Ok(OsString::from_wide(&u16_vec[..]))
}
#[cfg(not(windows))]
pub fn u16vec_to_osstring<'tcx, 'a>(u16_vec: Vec<u16>) -> InterpResult<'tcx, OsString> {
let s = String::from_utf16(&u16_vec[..])
.map_err(|_| err_unsup_format!("{:?} is not a valid utf-16 string", u16_vec))?;
Ok(s.into())
}
let u16_vec = self.eval_context_ref().memory.read_wide_str(scalar)?;
u16vec_to_osstring(u16_vec)
}
2019-10-20 17:40:21 -05:00
/// Helper function to write an OsStr as a null-terminated sequence of bytes, which is what
/// the Unix APIs usually handle. This function returns `Ok((false, length))` without trying
/// to write if `size` is not large enough to fit the contents of `os_string` plus a null
/// terminator. It returns `Ok((true, length))` if the writing process was successful. The
/// string length returned does not include the null terminator.
2019-12-04 03:43:36 -06:00
fn write_os_str_to_c_str(
&mut self,
os_str: &OsStr,
scalar: Scalar<Tag>,
2019-12-23 05:56:23 -06:00
size: u64,
) -> InterpResult<'tcx, (bool, u64)> {
#[cfg(unix)]
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
Ok(os_str.as_bytes())
}
#[cfg(not(unix))]
fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> {
// On non-unix platforms the best we can do to transform bytes from/to OS strings is to do the
// intermediate transformation into strings. Which invalidates non-utf8 paths that are actually
// valid.
os_str
.to_str()
.map(|s| s.as_bytes())
.ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str).into())
}
let bytes = os_str_to_bytes(os_str)?;
2019-10-17 10:21:06 -05:00
// If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
2019-10-24 03:23:44 -05:00
// terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
let string_length = u64::try_from(bytes.len()).unwrap();
if size <= string_length {
return Ok((false, string_length));
}
2019-12-23 05:56:23 -06:00
self.eval_context_mut()
.memory
.write_bytes(scalar, bytes.iter().copied().chain(iter::once(0u8)))?;
Ok((true, string_length))
}
/// Helper function to write an OsStr as a 0x0000-terminated u16-sequence, which is what
/// the Windows APIs usually handle. This function returns `Ok((false, length))` without trying
/// to write if `size` is not large enough to fit the contents of `os_string` plus a null
/// terminator. It returns `Ok((true, length))` if the writing process was successful. The
/// string length returned does not include the null terminator.
fn write_os_str_to_wide_str(
&mut self,
os_str: &OsStr,
mplace: MPlaceTy<'tcx, Tag>,
size: u64,
) -> InterpResult<'tcx, (bool, u64)> {
#[cfg(windows)]
fn os_str_to_u16vec<'tcx>(os_str: &OsStr) -> InterpResult<'tcx, Vec<u16>> {
Ok(os_str.encode_wide().collect())
}
#[cfg(not(windows))]
fn os_str_to_u16vec<'tcx>(os_str: &OsStr) -> InterpResult<'tcx, Vec<u16>> {
// On non-Windows platforms the best we can do to transform Vec<u16> from/to OS strings is to do the
// intermediate transformation into strings. Which invalidates non-utf8 paths that are actually
// valid.
os_str
.to_str()
.map(|s| s.encode_utf16().collect())
.ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str).into())
}
let u16_vec = os_str_to_u16vec(os_str)?;
// If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required
// 0x0000 terminator to memory would cause an out-of-bounds access.
let string_length = u64::try_from(u16_vec.len()).unwrap();
if size <= string_length {
return Ok((false, string_length));
}
let this = self.eval_context_mut();
// Store the UTF-16 string.
let char_size = Size::from_bytes(2);
for (idx, c) in u16_vec.into_iter().chain(iter::once(0x0000)).enumerate() {
let place = this.mplace_field(mplace, idx)?;
this.write_scalar(Scalar::from_uint(c, char_size), place.into())?;
}
Ok((true, string_length))
}
/// Dispatches to appropriate implementations for allocating & writing OsString in Memory,
/// depending on the interpretation target.
fn alloc_os_str_as_target_str(
&mut self,
os_str: &OsStr,
memkind: MemoryKind<MiriMemoryKind>,
) -> InterpResult<'tcx, Pointer<Tag>> {
let target_os = self.eval_context_ref().tcx.sess.target.target.target_os.as_str();
match target_os {
"linux" | "macos" => Ok(self.alloc_os_str_as_c_str(os_str, memkind)),
"windows" => Ok(self.alloc_os_str_as_wide_str(os_str, memkind)),
unsupported => throw_unsup_format!("OsString support for target OS `{}` not yet available", unsupported),
}
}
/// Allocate enough memory to store the given `OsStr` as a null-terminated sequence of bytes.
fn alloc_os_str_as_c_str(
&mut self,
os_str: &OsStr,
2020-03-01 03:26:24 -06:00
memkind: MemoryKind<MiriMemoryKind>,
) -> Pointer<Tag> {
let size = u64::try_from(os_str.len()).unwrap().checked_add(1).unwrap(); // Make space for `0` terminator.
let this = self.eval_context_mut();
let arg_type = this.tcx.mk_array(this.tcx.types.u8, size);
let arg_place = this.allocate(this.layout_of(arg_type).unwrap(), memkind);
assert!(self.write_os_str_to_c_str(os_str, arg_place.ptr, size).unwrap().0);
arg_place.ptr.assert_ptr()
}
/// Allocate enough memory to store the given `OsStr` as a null-terminated sequence of `u16`.
fn alloc_os_str_as_wide_str(
&mut self,
os_str: &OsStr,
memkind: MemoryKind<MiriMemoryKind>,
) -> Pointer<Tag> {
let size = u64::try_from(os_str.len()).unwrap().checked_add(1).unwrap(); // Make space for `0x0000` terminator.
let this = self.eval_context_mut();
let arg_type = this.tcx.mk_array(this.tcx.types.u16, size);
let arg_place = this.allocate(this.layout_of(arg_type).unwrap(), memkind);
assert!(self.write_os_str_to_wide_str(os_str, arg_place, size).unwrap().0);
arg_place.ptr.assert_ptr()
}
/// Read a null-terminated sequence of bytes, and perform path separator conversion if needed.
fn read_path_from_c_str<'a>(&'a self, scalar: Scalar<Tag>) -> InterpResult<'tcx, Cow<'a, Path>>
where
'tcx: 'a,
'mir: 'a,
{
let this = self.eval_context_ref();
let os_str = this.read_os_str_from_c_str(scalar)?;
#[cfg(windows)]
return Ok(if this.tcx.sess.target.target.target_os == "windows" {
// Windows-on-Windows, all fine.
Cow::Borrowed(Path::new(os_str))
} else {
// Unix target, Windows host. Need to convert target '/' to host '\'.
let converted = os_str
.encode_wide()
.map(|wchar| if wchar == '/' as u16 { '\\' as u16 } else { wchar })
.collect::<Vec<_>>();
Cow::Owned(PathBuf::from(OsString::from_wide(&converted)))
});
#[cfg(unix)]
return Ok(if this.tcx.sess.target.target.target_os == "windows" {
// Windows target, Unix host. Need to convert target '\' to host '/'.
let converted = os_str
.as_bytes()
.iter()
.map(|&wchar| if wchar == '/' as u8 { '\\' as u8 } else { wchar })
.collect::<Vec<_>>();
Cow::Owned(PathBuf::from(OsString::from_vec(converted)))
} else {
// Unix-on-Unix, all is fine.
Cow::Borrowed(Path::new(os_str))
});
}
/// Write a Path to the machine memory, adjusting path separators if needed.
fn write_path_to_c_str(
&mut self,
path: &Path,
scalar: Scalar<Tag>,
size: u64,
) -> InterpResult<'tcx, (bool, u64)> {
let this = self.eval_context_mut();
#[cfg(windows)]
let os_str = if this.tcx.sess.target.target.target_os == "windows" {
// Windows-on-Windows, all fine.
Cow::Borrowed(path.as_os_str())
} else {
// Unix target, Windows host. Need to convert host '\\' to target '/'.
let converted = path
.as_os_str()
.encode_wide()
.map(|wchar| if wchar == '\\' as u16 { '/' as u16 } else { wchar })
.collect::<Vec<_>>();
Cow::Owned(OsString::from_wide(&converted))
};
#[cfg(unix)]
let os_str = if this.tcx.sess.target.target.target_os == "windows" {
// Windows target, Unix host. Need to convert host '/' to target '\'.
let converted = path
.as_os_str()
.as_bytes()
.iter()
.map(|&wchar| if wchar == '/' as u8 { '\\' as u8 } else { wchar })
.collect::<Vec<_>>();
Cow::Owned(OsString::from_vec(converted))
} else {
// Unix-on-Unix, all is fine.
Cow::Borrowed(path.as_os_str())
};
this.write_os_str_to_c_str(&os_str, scalar, size)
}
2019-10-17 10:21:06 -05:00
}
2019-11-30 14:09:52 -06:00
pub fn immty_from_int_checked<'tcx>(
int: impl Into<i128>,
layout: TyLayout<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
2020-03-01 03:26:24 -06:00
Ok(ImmTy::try_from_int(int, layout).ok_or_else(|| {
err_unsup_format!("signed value {:#x} does not fit in {} bits", int, layout.size.bits())
2020-03-01 03:26:24 -06:00
})?)
2019-11-30 14:09:52 -06:00
}
pub fn immty_from_uint_checked<'tcx>(
int: impl Into<u128>,
layout: TyLayout<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
2020-03-01 03:26:24 -06:00
Ok(ImmTy::try_from_uint(int, layout).ok_or_else(|| {
err_unsup_format!("unsigned value {:#x} does not fit in {} bits", int, layout.size.bits())
2020-03-01 03:26:24 -06:00
})?)
2019-11-30 14:09:52 -06:00
}