rust/src/librustc/middle/traits/error_reporting.rs

350 lines
16 KiB
Rust
Raw Normal View History

2014-12-06 11:39:25 -05:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::{FulfillmentError, FulfillmentErrorCode,
ObligationCauseCode, SelectionError,
PredicateObligation, OutputTypeParameterMismatch};
use middle::infer::InferCtxt;
use middle::ty::{mod};
use syntax::codemap::Span;
use util::ppaux::{Repr, UserString};
pub fn report_fulfillment_errors<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
errors: &Vec<FulfillmentError<'tcx>>) {
for error in errors.iter() {
report_fulfillment_error(infcx, error);
}
}
fn report_fulfillment_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
error: &FulfillmentError<'tcx>) {
match error.code {
FulfillmentErrorCode::CodeSelectionError(ref e) => {
report_selection_error(infcx, &error.obligation, e);
}
FulfillmentErrorCode::CodeAmbiguity => {
maybe_report_ambiguity(infcx, &error.obligation);
}
}
}
pub fn report_selection_error<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>,
error: &SelectionError<'tcx>)
{
match *error {
SelectionError::Overflow => {
// We could track the stack here more precisely if we wanted, I imagine.
match obligation.trait_ref {
ty::Predicate::Trait(ref trait_ref) => {
let trait_ref =
infcx.resolve_type_vars_if_possible(&**trait_ref);
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"overflow evaluating the trait `{}` for the type `{}`",
trait_ref.user_string(infcx.tcx),
trait_ref.self_ty().user_string(infcx.tcx))[]);
}
ty::Predicate::Equate(ref predicate) => {
let predicate = infcx.resolve_type_vars_if_possible(predicate);
let err = infcx.equality_predicate(obligation.cause.span,
&predicate).unwrap_err();
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"the requirement `{}` is not satisfied (`{}`)",
predicate.user_string(infcx.tcx),
ty::type_err_to_str(infcx.tcx, &err)).as_slice());
}
ty::Predicate::TypeOutlives(..) |
ty::Predicate::RegionOutlives(..) => {
infcx.tcx.sess.span_err(
obligation.cause.span,
format!("overflow evaluating lifetime predicate").as_slice());
}
}
let current_limit = infcx.tcx.sess.recursion_limit.get();
let suggested_limit = current_limit * 2;
infcx.tcx.sess.span_note(
obligation.cause.span,
format!(
"consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
suggested_limit)[]);
note_obligation_cause(infcx, obligation);
}
SelectionError::Unimplemented => {
match obligation.trait_ref {
ty::Predicate::Trait(ref trait_ref) => {
let trait_ref =
infcx.resolve_type_vars_if_possible(
&**trait_ref);
if !ty::type_is_error(trait_ref.self_ty()) {
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"the trait `{}` is not implemented for the type `{}`",
trait_ref.user_string(infcx.tcx),
trait_ref.self_ty().user_string(infcx.tcx)).as_slice());
note_obligation_cause(infcx, obligation);
}
}
ty::Predicate::Equate(ref predicate) => {
let predicate = infcx.resolve_type_vars_if_possible(predicate);
let err = infcx.equality_predicate(obligation.cause.span,
&predicate).unwrap_err();
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"the requirement `{}` is not satisfied (`{}`)",
predicate.user_string(infcx.tcx),
ty::type_err_to_str(infcx.tcx, &err)).as_slice());
}
ty::Predicate::TypeOutlives(..) |
ty::Predicate::RegionOutlives(..) => {
let predicate = infcx.resolve_type_vars_if_possible(&obligation.trait_ref);
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"the requirement `{}` is not satisfied",
predicate.user_string(infcx.tcx)).as_slice());
}
}
}
OutputTypeParameterMismatch(ref expected_trait_ref, ref actual_trait_ref, ref e) => {
let expected_trait_ref =
infcx.resolve_type_vars_if_possible(
&**expected_trait_ref);
let actual_trait_ref =
infcx.resolve_type_vars_if_possible(
&**actual_trait_ref);
if !ty::type_is_error(actual_trait_ref.self_ty()) {
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"type mismatch: the type `{}` implements the trait `{}`, \
but the trait `{}` is required ({})",
expected_trait_ref.self_ty().user_string(infcx.tcx),
expected_trait_ref.user_string(infcx.tcx),
actual_trait_ref.user_string(infcx.tcx),
ty::type_err_to_str(infcx.tcx, e)).as_slice());
note_obligation_cause(infcx, obligation);
}
}
}
}
fn maybe_report_ambiguity<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>) {
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let trait_ref = match obligation.trait_ref {
ty::Predicate::Trait(ref trait_ref) => {
infcx.resolve_type_vars_if_possible(&**trait_ref)
}
_ => {
infcx.tcx.sess.span_bug(
obligation.cause.span,
format!("ambiguity from something other than a trait: {}",
obligation.trait_ref.repr(infcx.tcx)).as_slice());
}
};
let self_ty = trait_ref.self_ty();
debug!("maybe_report_ambiguity(trait_ref={}, self_ty={}, obligation={})",
trait_ref.repr(infcx.tcx),
self_ty.repr(infcx.tcx),
obligation.repr(infcx.tcx));
let all_types = &trait_ref.substs().types;
if all_types.iter().any(|&t| ty::type_is_error(t)) {
} else if all_types.iter().any(|&t| ty::type_needs_infer(t)) {
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. But in any case I just threw in this check for
// has_errors() to be sure that compilation isn't happening
// anyway. In that case, why inundate the user.
if !infcx.tcx.sess.has_errors() {
if infcx.tcx.lang_items.sized_trait()
.map_or(false, |sized_id| sized_id == trait_ref.def_id()) {
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"unable to infer enough type information about `{}`; type annotations \
required",
self_ty.user_string(infcx.tcx)).as_slice());
} else {
infcx.tcx.sess.span_err(
obligation.cause.span,
format!(
"unable to infer enough type information to \
locate the impl of the trait `{}` for \
the type `{}`; type annotations required",
trait_ref.user_string(infcx.tcx),
self_ty.user_string(infcx.tcx))[]);
note_obligation_cause(infcx, obligation);
}
}
} else if !infcx.tcx.sess.has_errors() {
// Ambiguity. Coherence should have reported an error.
infcx.tcx.sess.span_bug(
obligation.cause.span,
format!(
"coherence failed to report ambiguity: \
cannot locate the impl of the trait `{}` for \
the type `{}`",
trait_ref.user_string(infcx.tcx),
self_ty.user_string(infcx.tcx))[]);
}
}
fn note_obligation_cause<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
obligation: &PredicateObligation<'tcx>)
{
let trait_ref = match obligation.trait_ref {
ty::Predicate::Trait(ref trait_ref) => {
infcx.resolve_type_vars_if_possible(&**trait_ref)
}
_ => {
infcx.tcx.sess.span_bug(
obligation.cause.span,
format!("ambiguity from something other than a trait: {}",
obligation.trait_ref.repr(infcx.tcx)).as_slice());
}
};
note_obligation_cause_code(infcx,
&trait_ref,
obligation.cause.span,
&obligation.cause.code)
}
fn note_obligation_cause_code<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
trait_ref: &ty::PolyTraitRef<'tcx>,
cause_span: Span,
cause_code: &ObligationCauseCode<'tcx>)
{
let tcx = infcx.tcx;
let trait_name = ty::item_path_str(tcx, trait_ref.def_id());
match *cause_code {
ObligationCauseCode::MiscObligation => { }
ObligationCauseCode::ItemObligation(item_def_id) => {
let item_name = ty::item_path_str(tcx, item_def_id);
tcx.sess.span_note(
cause_span,
format!(
"the trait `{}` must be implemented because it is required by `{}`",
trait_name,
item_name).as_slice());
}
ObligationCauseCode::ObjectCastObligation(object_ty) => {
tcx.sess.span_note(
cause_span,
format!(
"the trait `{}` must be implemented for the cast \
to the object type `{}`",
trait_name,
infcx.ty_to_string(object_ty)).as_slice());
}
ObligationCauseCode::RepeatVec => {
tcx.sess.span_note(
cause_span,
"the `Copy` trait is required because the \
repeated element will be copied");
}
ObligationCauseCode::VariableType(_) => {
tcx.sess.span_note(
cause_span,
"all local variables must have a statically known size");
}
ObligationCauseCode::ReturnType => {
tcx.sess.span_note(
cause_span,
"the return type of a function must have a \
statically known size");
}
ObligationCauseCode::AssignmentLhsSized => {
tcx.sess.span_note(
cause_span,
"the left-hand-side of an assignment must have a statically known size");
}
ObligationCauseCode::StructInitializerSized => {
tcx.sess.span_note(
cause_span,
"structs must have a statically known size to be initialized");
}
ObligationCauseCode::ClosureCapture(var_id, closure_span, builtin_bound) => {
let def_id = tcx.lang_items.from_builtin_kind(builtin_bound).unwrap();
let trait_name = ty::item_path_str(tcx, def_id);
let name = ty::local_var_name_str(tcx, var_id);
span_note!(tcx.sess, closure_span,
"the closure that captures `{}` requires that all captured variables \
implement the trait `{}`",
name,
trait_name);
}
ObligationCauseCode::FieldSized => {
span_note!(tcx.sess, cause_span,
"only the last field of a struct or enum variant \
may have a dynamically sized type")
}
ObligationCauseCode::ObjectSized => {
span_note!(tcx.sess, cause_span,
"only sized types can be made into objects");
}
ObligationCauseCode::SharedStatic => {
span_note!(tcx.sess, cause_span,
"shared static variables must have a type that implements `Sync`");
}
ObligationCauseCode::BuiltinDerivedObligation(ref root_trait_ref, ref root_cause_code) => {
let root_trait_ref =
infcx.resolve_type_vars_if_possible(&**root_trait_ref);
span_note!(tcx.sess, cause_span,
"the type `{}` must implement `{}` because it appears within the type `{}`",
trait_ref.self_ty().user_string(infcx.tcx),
trait_ref.user_string(infcx.tcx),
root_trait_ref.self_ty().user_string(infcx.tcx));
note_obligation_cause_code(infcx, &root_trait_ref, cause_span, &**root_cause_code);
}
ObligationCauseCode::ImplDerivedObligation(ref root_trait_ref, ref root_cause_code) => {
let root_trait_ref =
infcx.resolve_type_vars_if_possible(&**root_trait_ref);
span_note!(tcx.sess, cause_span,
"the type `{}` must implement `{}` due to the requirements \
on the impl of `{}` for the type `{}`",
trait_ref.self_ty().user_string(infcx.tcx),
trait_ref.user_string(infcx.tcx),
root_trait_ref.user_string(infcx.tcx),
root_trait_ref.self_ty().user_string(infcx.tcx));
note_obligation_cause_code(infcx, &root_trait_ref, cause_span, &**root_cause_code);
}
}
}