rust/src/lib/ExtFmt.rs

348 lines
9.6 KiB
Rust
Raw Normal View History

2011-04-13 19:51:24 -05:00
/* The 'fmt' extension is modeled on the posix printf system.
*
* A posix conversion ostensibly looks like this:
*
* %[parameter][flags][width][.precision][length]type
*
* Given the different numeric type bestiary we have, we omit the 'length'
* parameter and support slightly different conversions for 'type':
*
* %[parameter][flags][width][.precision]type
*
* we also only support translating-to-rust a tiny subset of the possible
* combinations at the moment.
*/
import option.none;
import option.some;
2011-04-13 19:51:24 -05:00
/*
* We have a CT (compile-time) module that parses format strings into a
* sequence of conversions. From those conversions AST fragments are built
* that call into properly-typed functions in the RT (run-time) module. Each
* of those run-time conversion functions accepts another conversion
* description that specifies how to format its output.
*
* The building of the AST is currently done in a module inside the compiler,
* but should migrate over here as the plugin interface is defined.
*/
// Functions used by the fmt extension at compile time
mod CT {
tag signedness {
signed;
unsigned;
}
tag caseness {
case_upper;
case_lower;
}
tag ty {
ty_bool;
ty_str;
ty_char;
ty_int(signedness);
ty_bits;
ty_hex(caseness);
// FIXME: More types
}
tag flag {
flag_left_justify;
flag_left_zero_pad;
flag_left_space_pad;
flag_plus_if_positive;
flag_alternate;
}
tag count {
count_is(int);
count_is_param(int);
count_is_next_param;
count_implied;
}
// A formatted conversion from an expression to a string
type conv = rec(option.t[int] param,
vec[flag] flags,
count width,
count precision,
ty ty);
// A fragment of the output sequence
tag piece {
piece_string(str);
piece_conv(conv);
}
fn parse_fmt_string(str s) -> vec[piece] {
let vec[piece] pieces = vec();
auto lim = _str.byte_len(s);
auto buf = "";
fn flush_buf(str buf, &vec[piece] pieces) -> str {
if (_str.byte_len(buf) > 0u) {
auto piece = piece_string(buf);
pieces += vec(piece);
}
ret "";
}
auto i = 0u;
while (i < lim) {
auto curr = _str.substr(s, i, 1u);
if (_str.eq(curr, "%")) {
i += 1u;
if (i >= lim) {
log "unterminated conversion at end of string";
fail;
}
auto curr2 = _str.substr(s, i, 1u);
if (_str.eq(curr2, "%")) {
i += 1u;
} else {
buf = flush_buf(buf, pieces);
auto res = parse_conversion(s, i, lim);
pieces += vec(res._0);
i = res._1;
}
} else {
buf += curr;
i += 1u;
}
}
buf = flush_buf(buf, pieces);
ret pieces;
}
fn peek_num(str s, uint i, uint lim) -> option.t[tup(uint, uint)] {
if (i >= lim) {
ret none[tup(uint, uint)];
}
auto c = s.(i);
if (!('0' as u8 <= c && c <= '9' as u8)) {
ret option.none[tup(uint, uint)];
}
auto n = (c - ('0' as u8)) as uint;
alt (peek_num(s, i + 1u, lim)) {
case (none[tup(uint, uint)]) {
ret some[tup(uint, uint)](tup(n, i + 1u));
}
case (some[tup(uint, uint)](?next)) {
auto m = next._0;
auto j = next._1;
ret some[tup(uint, uint)](tup(n * 10u + m, j));
}
}
}
fn parse_conversion(str s, uint i, uint lim) -> tup(piece, uint) {
auto parm = parse_parameter(s, i, lim);
auto flags = parse_flags(s, parm._1, lim);
auto width = parse_count(s, flags._1, lim);
auto prec = parse_precision(s, width._1, lim);
auto ty = parse_type(s, prec._1, lim);
ret tup(piece_conv(rec(param = parm._0,
flags = flags._0,
width = width._0,
precision = prec._0,
ty = ty._0)),
ty._1);
}
fn parse_parameter(str s, uint i, uint lim) -> tup(option.t[int], uint) {
if (i >= lim) {
ret tup(none[int], i);
}
auto num = peek_num(s, i, lim);
alt (num) {
case (none[tup(uint, uint)]) {
ret tup(none[int], i);
}
case (some[tup(uint, uint)](?t)) {
auto n = t._0;
auto j = t._1;
if (j < lim && s.(j) == '$' as u8) {
ret tup(some[int](n as int), j + 1u);
}
else {
ret tup(none[int], i);
}
}
}
}
fn parse_flags(str s, uint i, uint lim) -> tup(vec[flag], uint) {
let vec[flag] noflags = vec();
if (i >= lim) {
ret tup(noflags, i);
}
fn more_(flag f, str s, uint i, uint lim) -> tup(vec[flag], uint) {
auto next = parse_flags(s, i + 1u, lim);
auto rest = next._0;
auto j = next._1;
let vec[flag] curr = vec(f);
ret tup(curr + rest, j);
}
auto more = bind more_(_, s, i, lim);
auto f = s.(i);
if (f == ('-' as u8)) {
ret more(flag_left_justify);
} else if (f == ('0' as u8)) {
ret more(flag_left_zero_pad);
} else if (f == (' ' as u8)) {
ret more(flag_left_space_pad);
} else if (f == ('+' as u8)) {
ret more(flag_plus_if_positive);
} else if (f == ('#' as u8)) {
ret more(flag_alternate);
} else {
ret tup(noflags, i);
}
}
fn parse_count(str s, uint i, uint lim) -> tup(count, uint) {
if (i >= lim) {
ret tup(count_implied, i);
}
if (s.(i) == ('*' as u8)) {
auto param = parse_parameter(s, i + 1u, lim);
auto j = param._1;
alt (param._0) {
case (none[int]) {
ret tup(count_is_next_param, j);
}
case (some[int](?n)) {
ret tup(count_is_param(n), j);
}
}
} else {
auto num = peek_num(s, i, lim);
alt (num) {
case (none[tup(uint, uint)]) {
ret tup(count_implied, i);
}
case (some[tup(uint, uint)](?num)) {
ret tup(count_is(num._0 as int), num._1);
}
}
}
}
fn parse_precision(str s, uint i, uint lim) -> tup(count, uint) {
if (i >= lim) {
ret tup(count_implied, i);
}
if (s.(i) == '.' as u8) {
ret parse_count(s, i + 1u, lim);
} else {
ret tup(count_implied, i);
}
}
fn parse_type(str s, uint i, uint lim) -> tup(ty, uint) {
if (i >= lim) {
log "missing type in conversion";
fail;
}
auto t;
auto tstr = _str.substr(s, i, 1u);
if (_str.eq(tstr, "b")) {
t = ty_bool;
} else if (_str.eq(tstr, "s")) {
t = ty_str;
} else if (_str.eq(tstr, "c")) {
t = ty_char;
} else if (_str.eq(tstr, "d")
|| _str.eq(tstr, "i")) {
// TODO: Do we really want two signed types here?
// How important is it to be printf compatible?
t = ty_int(signed);
} else if (_str.eq(tstr, "u")) {
t = ty_int(unsigned);
} else if (_str.eq(tstr, "x")) {
t = ty_hex(case_lower);
} else if (_str.eq(tstr, "X")) {
t = ty_hex(case_upper);
} else if (_str.eq(tstr, "t")) {
t = ty_bits;
} else {
log "unknown type in conversion";
fail;
}
ret tup(t, i + 1u);
}
}
2011-04-13 19:51:24 -05:00
// Functions used by the fmt extension at runtime. For now there are a lot of
// decisions made a runtime. If it proves worthwhile then some of these
// conditions can be evaluated at compile-time. For now though it's cleaner to
// implement it this way, I think.
mod RT {
tag ty {
ty_default;
ty_bits;
ty_hex_upper;
ty_hex_lower;
}
type conv = rec(ty ty);
fn conv_int(&conv cv, int i) -> str {
2011-04-11 19:22:05 -05:00
ret _int.to_str(i, 10u);
}
fn conv_uint(&conv cv, uint u) -> str {
alt (cv.ty) {
case (ty_default) {
ret _uint.to_str(u, 10u);
}
case (ty_hex_lower) {
ret _uint.to_str(u, 16u);
}
case (ty_hex_upper) {
ret _str.to_upper(_uint.to_str(u, 16u));
}
case (ty_bits) {
ret _uint.to_str(u, 2u);
}
}
2011-04-11 19:22:05 -05:00
}
fn conv_bool(&conv cv, bool b) -> str {
if (b) {
ret "true";
} else {
ret "false";
}
}
fn conv_char(&conv cv, char c) -> str {
ret _str.from_char(c);
}
}
2011-04-11 19:22:05 -05:00
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C .. 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End: