rust/src/librustdoc/core.rs

605 lines
24 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc_lint;
use rustc_driver::{self, driver, target_features, abort_on_err};
2015-01-03 22:42:21 -05:00
use rustc::session::{self, config};
use rustc::hir::def_id::{DefId, DefIndex, DefIndexAddressSpace, CrateNum, LOCAL_CRATE};
2017-03-23 14:18:25 -04:00
use rustc::hir::def::Def;
use rustc::hir::{self, HirVec};
use rustc::middle::cstore::CrateStore;
use rustc::middle::privacy::AccessLevels;
use rustc::ty::{self, TyCtxt, AllArenas};
2016-03-29 08:50:44 +03:00
use rustc::hir::map as hir_map;
use rustc::lint::{self, LintPass};
use rustc::session::config::ErrorOutputType;
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use rustc_resolve as resolve;
use rustc_metadata::creader::CrateLoader;
2015-11-25 01:23:22 +02:00
use rustc_metadata::cstore::CStore;
use rustc_target::spec::TargetTriple;
2013-08-15 16:28:54 -04:00
use syntax::ast::{self, Ident};
2018-08-18 12:14:03 +02:00
use syntax::source_map;
2018-03-27 16:31:19 +02:00
use syntax::edition::Edition;
use syntax::feature_gate::UnstableFeatures;
use syntax::json::JsonEmitter;
use syntax::ptr::P;
use syntax::symbol::keywords;
use syntax_pos::DUMMY_SP;
use errors;
use errors::emitter::{Emitter, EmitterWriter};
2013-08-15 16:28:54 -04:00
use std::cell::{RefCell, Cell};
2016-09-01 10:21:12 +03:00
use std::mem;
2018-03-03 06:20:26 +01:00
use rustc_data_structures::sync::{self, Lrc};
2015-11-22 21:02:04 +02:00
use std::rc::Rc;
use std::path::PathBuf;
2013-08-15 16:28:54 -04:00
use visit_ast::RustdocVisitor;
use clean;
use clean::{get_path_for_type, Clean, MAX_DEF_ID, AttributesExt};
use html::render::RenderInfo;
use passes;
2013-08-15 16:28:54 -04:00
2018-07-26 12:36:11 -06:00
pub use rustc::session::config::{Input, Options, CodegenOptions};
2015-01-17 21:23:05 -08:00
pub use rustc::session::search_paths::SearchPaths;
pub type ExternalPaths = FxHashMap<DefId, (Vec<String>, clean::TypeKind)>;
pub struct DocContext<'a, 'tcx: 'a, 'rcx: 'a, 'cstore: 'rcx> {
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
pub resolver: &'a RefCell<resolve::Resolver<'rcx, 'cstore>>,
2018-01-01 13:01:19 +05:30
/// The stack of module NodeIds up till this point
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
pub crate_name: Option<String>,
pub cstore: Rc<CStore>,
pub populated_all_crate_impls: Cell<bool>,
// Note that external items for which `doc(hidden)` applies to are shown as
// non-reachable while local items aren't. This is because we're reusing
// the access levels from crateanalysis.
/// Later on moved into `clean::Crate`
pub access_levels: RefCell<AccessLevels<DefId>>,
/// Later on moved into `html::render::CACHE_KEY`
pub renderinfo: RefCell<RenderInfo>,
/// Later on moved through `clean::Crate` into `html::render::CACHE_KEY`
pub external_traits: RefCell<FxHashMap<DefId, clean::Trait>>,
2018-02-21 18:33:42 -06:00
/// Used while populating `external_traits` to ensure we don't process the same trait twice at
/// the same time.
pub active_extern_traits: RefCell<Vec<DefId>>,
2016-09-01 10:21:12 +03:00
// The current set of type and lifetime substitutions,
// for expanding type aliases at the HIR level:
/// Table type parameter definition -> substituted type
pub ty_substs: RefCell<FxHashMap<Def, clean::Type>>,
2016-09-01 10:21:12 +03:00
/// Table node id of lifetime parameter definition -> substituted lifetime
pub lt_substs: RefCell<FxHashMap<DefId, clean::Lifetime>>,
/// Table DefId of `impl Trait` in argument position -> bounds
pub impl_trait_bounds: RefCell<FxHashMap<DefId, Vec<clean::GenericBound>>>,
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
pub send_trait: Option<DefId>,
pub fake_def_ids: RefCell<FxHashMap<CrateNum, DefId>>,
pub all_fake_def_ids: RefCell<FxHashSet<DefId>>,
/// Maps (type_id, trait_id) -> auto trait impl
2018-07-12 22:00:57 +02:00
pub generated_synthetics: RefCell<FxHashSet<(DefId, DefId)>>,
2018-07-21 00:15:08 +02:00
pub all_traits: Vec<DefId>,
2014-03-05 16:36:01 +02:00
}
impl<'a, 'tcx, 'rcx, 'cstore> DocContext<'a, 'tcx, 'rcx, 'cstore> {
pub fn sess(&self) -> &session::Session {
&self.tcx.sess
}
2016-09-01 10:21:12 +03:00
/// Call the closure with the given parameters set as
/// the substitutions for a type alias' RHS.
pub fn enter_alias<F, R>(&self,
ty_substs: FxHashMap<Def, clean::Type>,
lt_substs: FxHashMap<DefId, clean::Lifetime>,
2016-09-01 10:21:12 +03:00
f: F) -> R
where F: FnOnce() -> R {
let (old_tys, old_lts) =
(mem::replace(&mut *self.ty_substs.borrow_mut(), ty_substs),
mem::replace(&mut *self.lt_substs.borrow_mut(), lt_substs));
let r = f();
*self.ty_substs.borrow_mut() = old_tys;
*self.lt_substs.borrow_mut() = old_lts;
r
}
// This is an ugly hack, but it's the simplest way to handle synthetic impls without greatly
// refactoring either librustdoc or librustc. In particular, allowing new DefIds to be
// registered after the AST is constructed would require storing the defid mapping in a
// RefCell, decreasing the performance for normal compilation for very little gain.
//
// Instead, we construct 'fake' def ids, which start immediately after the last DefId in
// DefIndexAddressSpace::Low. In the Debug impl for clean::Item, we explicitly check for fake
// def ids, as we'll end up with a panic if we use the DefId Debug impl for fake DefIds
pub fn next_def_id(&self, crate_num: CrateNum) -> DefId {
let start_def_id = {
let next_id = if crate_num == LOCAL_CRATE {
self.tcx
.hir
.definitions()
.def_path_table()
.next_id(DefIndexAddressSpace::Low)
} else {
self.cstore
.def_path_table(crate_num)
.next_id(DefIndexAddressSpace::Low)
};
DefId {
krate: crate_num,
index: next_id,
}
};
let mut fake_ids = self.fake_def_ids.borrow_mut();
let def_id = fake_ids.entry(crate_num).or_insert(start_def_id).clone();
fake_ids.insert(
crate_num,
DefId {
krate: crate_num,
index: DefIndex::from_array_index(
def_id.index.as_array_index() + 1,
def_id.index.address_space(),
),
},
);
MAX_DEF_ID.with(|m| {
m.borrow_mut()
.entry(def_id.krate.clone())
.or_insert(start_def_id);
});
self.all_fake_def_ids.borrow_mut().insert(def_id);
def_id.clone()
}
pub fn get_real_ty<F>(&self,
def_id: DefId,
def_ctor: &F,
real_name: &Option<Ident>,
generics: &ty::Generics,
) -> hir::Ty
where F: Fn(DefId) -> Def {
let path = get_path_for_type(self.tcx, def_id, def_ctor);
let mut segments = path.segments.into_vec();
let last = segments.pop().expect("segments were empty");
segments.push(hir::PathSegment::new(
real_name.unwrap_or(last.ident),
self.generics_to_path_params(generics.clone()),
false,
));
let new_path = hir::Path {
span: path.span,
def: path.def,
segments: HirVec::from_vec(segments),
};
hir::Ty {
id: ast::DUMMY_NODE_ID,
node: hir::TyKind::Path(hir::QPath::Resolved(None, P(new_path))),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
}
}
pub fn generics_to_path_params(&self, generics: ty::Generics) -> hir::GenericArgs {
let mut args = vec![];
for param in generics.params.iter() {
match param.kind {
ty::GenericParamDefKind::Lifetime => {
let name = if param.name == "" {
hir::ParamName::Plain(keywords::StaticLifetime.ident())
} else {
hir::ParamName::Plain(ast::Ident::from_interned_str(param.name))
};
args.push(hir::GenericArg::Lifetime(hir::Lifetime {
id: ast::DUMMY_NODE_ID,
span: DUMMY_SP,
name: hir::LifetimeName::Param(name),
}));
}
ty::GenericParamDefKind::Type {..} => {
args.push(hir::GenericArg::Type(self.ty_param_to_ty(param.clone())));
}
}
}
hir::GenericArgs {
args: HirVec::from_vec(args),
bindings: HirVec::new(),
parenthesized: false,
}
}
pub fn ty_param_to_ty(&self, param: ty::GenericParamDef) -> hir::Ty {
debug!("ty_param_to_ty({:?}) {:?}", param, param.def_id);
hir::Ty {
id: ast::DUMMY_NODE_ID,
node: hir::TyKind::Path(hir::QPath::Resolved(
None,
P(hir::Path {
span: DUMMY_SP,
def: Def::TyParam(param.def_id),
segments: HirVec::from_vec(vec![
hir::PathSegment::from_ident(Ident::from_interned_str(param.name))
]),
}),
)),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
}
}
2013-08-15 16:28:54 -04:00
}
2016-04-17 08:54:48 +02:00
pub trait DocAccessLevels {
fn is_doc_reachable(&self, did: DefId) -> bool;
2016-04-17 08:54:48 +02:00
}
impl DocAccessLevels for AccessLevels<DefId> {
fn is_doc_reachable(&self, did: DefId) -> bool {
self.is_public(did)
}
}
/// Creates a new diagnostic `Handler` that can be used to emit warnings and errors.
///
2018-08-18 12:13:35 +02:00
/// If the given `error_format` is `ErrorOutputType::Json` and no `SourceMap` is given, a new one
/// will be created for the handler.
2018-08-18 12:14:14 +02:00
pub fn new_handler(error_format: ErrorOutputType, source_map: Option<Lrc<source_map::SourceMap>>)
-> errors::Handler
{
// rustdoc doesn't override (or allow to override) anything from this that is relevant here, so
// stick to the defaults
2018-07-26 12:36:11 -06:00
let sessopts = Options::default();
let emitter: Box<dyn Emitter + sync::Send> = match error_format {
ErrorOutputType::HumanReadable(color_config) => Box::new(
EmitterWriter::stderr(
color_config,
2018-08-18 12:14:14 +02:00
source_map.map(|cm| cm as _),
false,
sessopts.debugging_opts.teach,
).ui_testing(sessopts.debugging_opts.ui_testing)
),
ErrorOutputType::Json(pretty) => {
2018-08-18 12:14:14 +02:00
let source_map = source_map.unwrap_or_else(
2018-08-18 12:14:03 +02:00
|| Lrc::new(source_map::SourceMap::new(sessopts.file_path_mapping())));
Box::new(
JsonEmitter::stderr(
None,
2018-08-18 12:14:14 +02:00
source_map,
pretty,
).ui_testing(sessopts.debugging_opts.ui_testing)
)
},
ErrorOutputType::Short(color_config) => Box::new(
EmitterWriter::stderr(
color_config,
2018-08-18 12:14:14 +02:00
source_map.map(|cm| cm as _),
true,
false)
),
};
errors::Handler::with_emitter_and_flags(
emitter,
errors::HandlerFlags {
can_emit_warnings: true,
treat_err_as_bug: false,
report_delayed_bugs: false,
external_macro_backtrace: false,
..Default::default()
},
)
}
pub fn run_core(search_paths: SearchPaths,
cfgs: Vec<String>,
externs: config::Externs,
input: Input,
triple: Option<TargetTriple>,
maybe_sysroot: Option<PathBuf>,
allow_warnings: bool,
Generate documentation for auto-trait impls A new section is added to both both struct and trait doc pages. On struct/enum pages, a new 'Auto Trait Implementations' section displays any synthetic implementations for auto traits. Currently, this is only done for Send and Sync. On trait pages, a new 'Auto Implementors' section displays all types which automatically implement the trait. Effectively, this is a list of all public types in the standard library. Synthesized impls for a particular auto trait ('synthetic impls') take into account generic bounds. For example, a type 'struct Foo<T>(T)' will have 'impl<T> Send for Foo<T> where T: Send' generated for it. Manual implementations of auto traits are also taken into account. If we have the following types: 'struct Foo<T>(T)' 'struct Wrapper<T>(Foo<T>)' 'unsafe impl<T> Send for Wrapper<T>' // pretend that Wrapper<T> makes this sound somehow Then Wrapper will have the following impl generated: 'impl<T> Send for Wrapper<T>' reflecting the fact that 'T: Send' need not hold for 'Wrapper<T>: Send' to hold Lifetimes, HRTBS, and projections (e.g. '<T as Iterator>::Item') are taken into account by synthetic impls However, if a type can *never* implement a particular auto trait (e.g. 'struct MyStruct<T>(*const T)'), then a negative impl will be generated (in this case, 'impl<T> !Send for MyStruct<T>') All of this means that a user should be able to copy-paste a synthetic impl into their code, without any observable changes in behavior (assuming the rest of the program remains unchanged).
2017-11-22 16:16:55 -05:00
crate_name: Option<String>,
2018-03-27 16:31:19 +02:00
force_unstable_if_unmarked: bool,
2018-04-12 13:12:53 -05:00
edition: Edition,
cg: CodegenOptions,
error_format: ErrorOutputType,
cmd_lints: Vec<(String, lint::Level)>,
lint_cap: Option<lint::Level>,
describe_lints: bool,
mut manual_passes: Vec<String>,
mut default_passes: passes::DefaultPassOption)
-> (clean::Crate, RenderInfo, Vec<String>)
{
// Parse, resolve, and typecheck the given crate.
let cpath = match input {
Input::File(ref p) => Some(p.clone()),
_ => None
};
2013-08-15 16:28:54 -04:00
2018-06-13 21:17:15 +02:00
let intra_link_resolution_failure_name = lint::builtin::INTRA_DOC_LINK_RESOLUTION_FAILURE.name;
let warnings_lint_name = lint::builtin::WARNINGS.name;
2018-07-05 20:06:33 +02:00
let missing_docs = rustc_lint::builtin::MISSING_DOCS.name;
2018-07-11 00:36:31 +02:00
// In addition to those specific lints, we also need to whitelist those given through
// command line, otherwise they'll get ignored and we don't want that.
let mut whitelisted_lints = vec![warnings_lint_name.to_owned(),
intra_link_resolution_failure_name.to_owned(),
missing_docs.to_owned()];
whitelisted_lints.extend(cmd_lints.iter().map(|(lint, _)| lint).cloned());
2018-07-11 00:36:31 +02:00
let lints = lint::builtin::HardwiredLints.get_lints()
2018-06-21 09:04:50 +02:00
.into_iter()
.chain(rustc_lint::SoftLints.get_lints().into_iter())
.filter_map(|lint| {
2018-06-09 17:20:58 +02:00
if lint.name == warnings_lint_name ||
lint.name == intra_link_resolution_failure_name {
None
} else {
2018-06-09 17:20:58 +02:00
Some((lint.name_lower(), lint::Allow))
}
})
.chain(cmd_lints.into_iter())
.collect::<Vec<_>>();
let host_triple = TargetTriple::from_triple(config::host_triple());
// plays with error output here!
let sessopts = config::Options {
maybe_sysroot,
search_paths,
crate_types: vec![config::CrateType::Rlib],
lint_opts: if !allow_warnings {
lints
} else {
vec![]
},
lint_cap: Some(lint_cap.unwrap_or_else(|| lint::Forbid)),
2018-04-12 13:12:53 -05:00
cg,
externs,
target_triple: triple.unwrap_or(host_triple),
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 06:26:08 -08:00
// Ensure that rustdoc works even if rustc is feature-staged
unstable_features: UnstableFeatures::Allow,
actually_rustdoc: true,
debugging_opts: config::DebuggingOptions {
force_unstable_if_unmarked,
..config::basic_debugging_options()
},
error_format,
2018-04-20 14:47:23 -07:00
edition,
describe_lints,
2018-07-26 12:36:11 -06:00
..Options::default()
2013-08-15 16:28:54 -04:00
};
2018-04-26 00:49:52 +02:00
driver::spawn_thread_pool(sessopts, move |sessopts| {
2018-08-18 12:14:14 +02:00
let source_map = Lrc::new(source_map::SourceMap::new(sessopts.file_path_mapping()));
let diagnostic_handler = new_handler(error_format, Some(source_map.clone()));
2018-04-26 00:49:52 +02:00
let mut sess = session::build_session_(
2018-08-18 12:14:14 +02:00
sessopts, cpath, diagnostic_handler, source_map,
2018-04-26 00:49:52 +02:00
);
2018-07-05 20:06:33 +02:00
lint::builtin::HardwiredLints.get_lints()
.into_iter()
.chain(rustc_lint::SoftLints.get_lints().into_iter())
.filter_map(|lint| {
2018-07-09 18:10:08 +02:00
// We don't want to whitelist *all* lints so let's
// ignore those ones.
2018-07-11 00:36:31 +02:00
if whitelisted_lints.iter().any(|l| &lint.name == l) {
2018-07-05 20:06:33 +02:00
None
} else {
Some(lint)
}
})
.for_each(|l| {
sess.driver_lint_caps.insert(lint::LintId::of(l),
lint::Allow);
});
2018-05-08 16:10:16 +03:00
let codegen_backend = rustc_driver::get_codegen_backend(&sess);
let cstore = Rc::new(CStore::new(codegen_backend.metadata_loader()));
2018-04-26 00:49:52 +02:00
rustc_lint::register_builtins(&mut sess.lint_store.borrow_mut(), Some(&sess));
let mut cfg = config::build_configuration(&sess, config::parse_cfgspecs(cfgs));
2018-05-08 16:10:16 +03:00
target_features::add_configuration(&mut cfg, &sess, &*codegen_backend);
2018-04-26 00:49:52 +02:00
sess.parse_sess.config = cfg;
let control = &driver::CompileController::basic();
let krate = panictry!(driver::phase_1_parse_input(control, &sess, &input));
2018-05-31 22:08:31 +02:00
let name = match crate_name {
Some(ref crate_name) => crate_name.clone(),
None => ::rustc_codegen_utils::link::find_crate_name(Some(&sess), &krate.attrs, &input),
};
2018-04-26 00:49:52 +02:00
let mut crate_loader = CrateLoader::new(&sess, &cstore, &name);
let resolver_arenas = resolve::Resolver::arenas();
let result = driver::phase_2_configure_and_expand_inner(&sess,
&cstore,
krate,
None,
&name,
None,
resolve::MakeGlobMap::No,
&resolver_arenas,
&mut crate_loader,
|_| Ok(()));
let driver::InnerExpansionResult {
mut hir_forest,
2018-05-10 20:13:25 +02:00
mut resolver,
2018-04-26 00:49:52 +02:00
..
} = abort_on_err(result, &sess);
2018-05-10 20:13:25 +02:00
resolver.ignore_extern_prelude_feature = true;
2018-04-26 00:49:52 +02:00
// We need to hold on to the complete resolver, so we clone everything
// for the analysis passes to use. Suboptimal, but necessary in the
// current architecture.
let defs = resolver.definitions.clone();
let resolutions = ty::Resolutions {
freevars: resolver.freevars.clone(),
export_map: resolver.export_map.clone(),
trait_map: resolver.trait_map.clone(),
maybe_unused_trait_imports: resolver.maybe_unused_trait_imports.clone(),
maybe_unused_extern_crates: resolver.maybe_unused_extern_crates.clone(),
2018-02-10 14:34:46 -05:00
};
2018-04-26 00:49:52 +02:00
let analysis = ty::CrateAnalysis {
access_levels: Lrc::new(AccessLevels::default()),
name: name.to_string(),
glob_map: if resolver.make_glob_map { Some(resolver.glob_map.clone()) } else { None },
};
2018-04-26 00:49:52 +02:00
let arenas = AllArenas::new();
let hir_map = hir_map::map_crate(&sess, &*cstore, &mut hir_forest, &defs);
let output_filenames = driver::build_output_filenames(&input,
&None,
&None,
&[],
&sess);
let resolver = RefCell::new(resolver);
2018-05-08 16:10:16 +03:00
abort_on_err(driver::phase_3_run_analysis_passes(&*codegen_backend,
2018-04-26 00:49:52 +02:00
control,
&sess,
&*cstore,
hir_map,
analysis,
resolutions,
&arenas,
&name,
&output_filenames,
|tcx, analysis, _, result| {
if result.is_err() {
2018-04-26 00:49:52 +02:00
sess.fatal("Compilation failed, aborting rustdoc");
}
let ty::CrateAnalysis { access_levels, .. } = analysis;
// Convert from a NodeId set to a DefId set since we don't always have easy access
// to the map from defid -> nodeid
let access_levels = AccessLevels {
map: access_levels.map.iter()
.map(|(&k, &v)| (tcx.hir.local_def_id(k), v))
.collect()
};
let send_trait = if crate_name == Some("core".to_string()) {
2018-07-10 15:29:01 +02:00
clean::path_to_def_local(&tcx, &["marker", "Send"])
2018-04-26 00:49:52 +02:00
} else {
2018-07-10 15:29:01 +02:00
clean::path_to_def(&tcx, &["core", "marker", "Send"])
2018-04-26 00:49:52 +02:00
};
let ctxt = DocContext {
tcx,
resolver: &resolver,
crate_name,
cstore: cstore.clone(),
populated_all_crate_impls: Cell::new(false),
access_levels: RefCell::new(access_levels),
external_traits: Default::default(),
active_extern_traits: Default::default(),
renderinfo: Default::default(),
ty_substs: Default::default(),
lt_substs: Default::default(),
impl_trait_bounds: Default::default(),
send_trait: send_trait,
fake_def_ids: RefCell::new(FxHashMap()),
all_fake_def_ids: RefCell::new(FxHashSet()),
generated_synthetics: RefCell::new(FxHashSet()),
2018-07-21 00:15:08 +02:00
all_traits: tcx.all_traits(LOCAL_CRATE).to_vec(),
2018-04-26 00:49:52 +02:00
};
debug!("crate: {:?}", tcx.hir.krate());
let mut krate = {
2018-07-10 15:29:01 +02:00
let mut v = RustdocVisitor::new(&ctxt);
2018-04-26 00:49:52 +02:00
v.visit(tcx.hir.krate());
v.clean(&ctxt)
};
fn report_deprecated_attr(name: &str, diag: &errors::Handler) {
let mut msg = diag.struct_warn(&format!("the `#![doc({})]` attribute is \
considered deprecated", name));
msg.warn("please see https://github.com/rust-lang/rust/issues/44136");
if name == "no_default_passes" {
msg.help("you may want to use `#![doc(document_private_items)]`");
}
msg.emit();
}
// Process all of the crate attributes, extracting plugin metadata along
// with the passes which we are supposed to run.
for attr in krate.module.as_ref().unwrap().attrs.lists("doc") {
let diag = ctxt.sess().diagnostic();
let name = attr.name().map(|s| s.as_str());
let name = name.as_ref().map(|s| &s[..]);
if attr.is_word() {
if name == Some("no_default_passes") {
report_deprecated_attr("no_default_passes", diag);
if default_passes == passes::DefaultPassOption::Default {
default_passes = passes::DefaultPassOption::None;
}
}
} else if let Some(value) = attr.value_str() {
let sink = match name {
Some("passes") => {
report_deprecated_attr("passes = \"...\"", diag);
&mut manual_passes
},
Some("plugins") => {
report_deprecated_attr("plugins = \"...\"", diag);
eprintln!("WARNING: #![doc(plugins = \"...\")] no longer functions; \
see CVE-2018-1000622");
continue
},
_ => continue,
};
for p in value.as_str().split_whitespace() {
sink.push(p.to_string());
}
}
if attr.is_word() && name == Some("document_private_items") {
if default_passes == passes::DefaultPassOption::Default {
default_passes = passes::DefaultPassOption::Private;
}
}
}
let mut passes: Vec<String> =
passes::defaults(default_passes).iter().map(|p| p.to_string()).collect();
passes.extend(manual_passes);
for pass in &passes {
// the "unknown pass" error will be reported when late passes are run
if let Some(pass) = passes::find_pass(pass).and_then(|p| p.early_fn()) {
krate = pass(krate, &ctxt);
}
}
ctxt.sess().abort_if_errors();
(krate, ctxt.renderinfo.into_inner(), passes)
2018-04-26 00:49:52 +02:00
}), &sess)
})
2013-08-15 16:28:54 -04:00
}