2018-11-11 04:36:11 -06:00
//! All functions here are copied from https://github.com/rust-lang/rust/blob/942864a000efd74b73e36bda5606b2cdb55ecf39/src/librustc_codegen_llvm/back/link.rs
use std ::env ;
use std ::fmt ;
use std ::fs ;
use std ::io ;
use std ::iter ;
use std ::path ::{ Path , PathBuf } ;
use std ::process ::{ Output , Stdio } ;
use cc ::windows_registry ;
2018-11-17 11:23:52 -06:00
use log ::info ;
2018-11-11 04:36:11 -06:00
use rustc ::middle ::cstore ::{ NativeLibrary , NativeLibraryKind } ;
use rustc ::middle ::dependency_format ::Linkage ;
use rustc ::session ::config ::{ self , OutputType , RUST_CGU_EXT } ;
use rustc ::session ::search_paths ::PathKind ;
use rustc ::session ::Session ;
use rustc ::util ::common ::time ;
use rustc_codegen_utils ::command ::Command ;
use rustc_codegen_utils ::linker ::* ;
use rustc_data_structures ::fx ::FxHashSet ;
use rustc_fs_util ::fix_windows_verbatim_for_gcc ;
use rustc_target ::spec ::LinkerFlavor ;
use syntax ::attr ;
use crate ::prelude ::* ;
use crate ::archive ::{ ArchiveBuilder , ArchiveConfig } ;
use crate ::metadata ::METADATA_FILENAME ;
// cg_clif doesn't have bytecode, so this is just a dummy
const RLIB_BYTECODE_EXTENSION : & str = " .cg_clif_bytecode_dummy " ;
fn archive_search_paths ( sess : & Session ) -> Vec < PathBuf > {
let mut search = Vec ::new ( ) ;
sess . target_filesearch ( PathKind ::Native ) . for_each_lib_search_path ( | path , _ | {
search . push ( path . to_path_buf ( ) ) ;
} ) ;
return search ;
}
fn archive_config < ' a > ( sess : & ' a Session ,
output : & Path ,
input : Option < & Path > ) -> ArchiveConfig < ' a > {
ArchiveConfig {
sess ,
dst : output . to_path_buf ( ) ,
src : input . map ( | p | p . to_path_buf ( ) ) ,
lib_search_paths : archive_search_paths ( sess ) ,
}
}
// The third parameter is for env vars, used on windows to set up the
// path for MSVC to find its DLLs, and gcc to find its bundled
// toolchain
pub fn get_linker ( sess : & Session , linker : & Path , flavor : LinkerFlavor ) -> ( PathBuf , Command ) {
let msvc_tool = windows_registry ::find_tool ( & sess . opts . target_triple . triple ( ) , " link.exe " ) ;
// If our linker looks like a batch script on Windows then to execute this
// we'll need to spawn `cmd` explicitly. This is primarily done to handle
// emscripten where the linker is `emcc.bat` and needs to be spawned as
// `cmd /c emcc.bat ...`.
//
// This worked historically but is needed manually since #42436 (regression
// was tagged as #42791) and some more info can be found on #44443 for
// emscripten itself.
let mut cmd = match linker . to_str ( ) {
Some ( linker ) if cfg! ( windows ) & & linker . ends_with ( " .bat " ) = > Command ::bat_script ( linker ) ,
_ = > match flavor {
LinkerFlavor ::Lld ( f ) = > Command ::lld ( linker , f ) ,
LinkerFlavor ::Msvc
if sess . opts . cg . linker . is_none ( ) & & sess . target . target . options . linker . is_none ( ) = >
{
Command ::new ( msvc_tool . as_ref ( ) . map ( | t | t . path ( ) ) . unwrap_or ( linker ) )
} ,
_ = > Command ::new ( linker ) ,
}
} ;
// The compiler's sysroot often has some bundled tools, so add it to the
// PATH for the child.
let mut new_path = sess . host_filesearch ( PathKind ::All )
. get_tools_search_paths ( ) ;
let mut msvc_changed_path = false ;
if sess . target . target . options . is_like_msvc {
if let Some ( ref tool ) = msvc_tool {
cmd . args ( tool . args ( ) ) ;
for & ( ref k , ref v ) in tool . env ( ) {
if k = = " PATH " {
new_path . extend ( env ::split_paths ( v ) ) ;
msvc_changed_path = true ;
} else {
cmd . env ( k , v ) ;
}
}
}
}
if ! msvc_changed_path {
if let Some ( path ) = env ::var_os ( " PATH " ) {
new_path . extend ( env ::split_paths ( & path ) ) ;
}
}
cmd . env ( " PATH " , env ::join_paths ( new_path ) . unwrap ( ) ) ;
( linker . to_path_buf ( ) , cmd )
}
pub fn linker_and_flavor ( sess : & Session ) -> ( PathBuf , LinkerFlavor ) {
fn infer_from (
sess : & Session ,
linker : Option < PathBuf > ,
flavor : Option < LinkerFlavor > ,
) -> Option < ( PathBuf , LinkerFlavor ) > {
match ( linker , flavor ) {
( Some ( linker ) , Some ( flavor ) ) = > Some ( ( linker , flavor ) ) ,
// only the linker flavor is known; use the default linker for the selected flavor
( None , Some ( flavor ) ) = > Some ( ( PathBuf ::from ( match flavor {
LinkerFlavor ::Em = > if cfg! ( windows ) { " emcc.bat " } else { " emcc " } ,
LinkerFlavor ::Gcc = > " cc " ,
LinkerFlavor ::Ld = > " ld " ,
LinkerFlavor ::Msvc = > " link.exe " ,
LinkerFlavor ::Lld ( _ ) = > " lld " ,
} ) , flavor ) ) ,
( Some ( linker ) , None ) = > {
let stem = linker . file_stem ( ) . and_then ( | stem | stem . to_str ( ) ) . unwrap_or_else ( | | {
sess . fatal ( " couldn't extract file stem from specified linker " ) ;
} ) . to_owned ( ) ;
let flavor = if stem = = " emcc " {
LinkerFlavor ::Em
} else if stem = = " gcc " | | stem . ends_with ( " -gcc " ) {
LinkerFlavor ::Gcc
} else if stem = = " ld " | | stem = = " ld.lld " | | stem . ends_with ( " -ld " ) {
LinkerFlavor ::Ld
} else if stem = = " link " | | stem = = " lld-link " {
LinkerFlavor ::Msvc
} else if stem = = " lld " | | stem = = " rust-lld " {
LinkerFlavor ::Lld ( sess . target . target . options . lld_flavor )
} else {
// fall back to the value in the target spec
sess . target . target . linker_flavor
} ;
Some ( ( linker , flavor ) )
} ,
( None , None ) = > None ,
}
}
// linker and linker flavor specified via command line have precedence over what the target
// specification specifies
if let Some ( ret ) = infer_from (
sess ,
sess . opts . cg . linker . clone ( ) ,
sess . opts . debugging_opts . linker_flavor ,
) {
return ret ;
}
if let Some ( ret ) = infer_from (
sess ,
sess . target . target . options . linker . clone ( ) . map ( PathBuf ::from ) ,
Some ( sess . target . target . linker_flavor ) ,
) {
return ret ;
}
bug! ( " Not enough information provided to determine how to invoke the linker " ) ;
}
pub fn exec_linker ( sess : & Session , cmd : & mut Command , out_filename : & Path , tmpdir : & Path )
-> io ::Result < Output >
{
// When attempting to spawn the linker we run a risk of blowing out the
// size limits for spawning a new process with respect to the arguments
// we pass on the command line.
//
// Here we attempt to handle errors from the OS saying "your list of
// arguments is too big" by reinvoking the linker again with an `@`-file
// that contains all the arguments. The theory is that this is then
// accepted on all linkers and the linker will read all its options out of
// there instead of looking at the command line.
if ! cmd . very_likely_to_exceed_some_spawn_limit ( ) {
match cmd . command ( ) . stdout ( Stdio ::piped ( ) ) . stderr ( Stdio ::piped ( ) ) . spawn ( ) {
Ok ( child ) = > {
let output = child . wait_with_output ( ) ;
flush_linked_file ( & output , out_filename ) ? ;
return output ;
}
Err ( ref e ) if command_line_too_big ( e ) = > {
info! ( " command line to linker was too big: {} " , e ) ;
}
Err ( e ) = > return Err ( e )
}
}
info! ( " falling back to passing arguments to linker via an @-file " ) ;
let mut cmd2 = cmd . clone ( ) ;
let mut args = String ::new ( ) ;
for arg in cmd2 . take_args ( ) {
args . push_str ( & Escape {
arg : arg . to_str ( ) . unwrap ( ) ,
is_like_msvc : sess . target . target . options . is_like_msvc ,
} . to_string ( ) ) ;
args . push_str ( " \n " ) ;
}
let file = tmpdir . join ( " linker-arguments " ) ;
let bytes = if sess . target . target . options . is_like_msvc {
let mut out = Vec ::with_capacity ( ( 1 + args . len ( ) ) * 2 ) ;
// start the stream with a UTF-16 BOM
for c in iter ::once ( 0xFEFF ) . chain ( args . encode_utf16 ( ) ) {
// encode in little endian
out . push ( c as u8 ) ;
out . push ( ( c > > 8 ) as u8 ) ;
}
out
} else {
args . into_bytes ( )
} ;
fs ::write ( & file , & bytes ) ? ;
cmd2 . arg ( format! ( " @ {} " , file . display ( ) ) ) ;
info! ( " invoking linker {:?} " , cmd2 ) ;
let output = cmd2 . output ( ) ;
flush_linked_file ( & output , out_filename ) ? ;
return output ;
#[ cfg(unix) ]
fn flush_linked_file ( _ : & io ::Result < Output > , _ : & Path ) -> io ::Result < ( ) > {
Ok ( ( ) )
}
#[ cfg(windows) ]
fn flush_linked_file ( command_output : & io ::Result < Output > , out_filename : & Path )
-> io ::Result < ( ) >
{
// On Windows, under high I/O load, output buffers are sometimes not flushed,
// even long after process exit, causing nasty, non-reproducible output bugs.
//
// File::sync_all() calls FlushFileBuffers() down the line, which solves the problem.
//
// А full writeup of the original Chrome bug can be found at
// randomascii.wordpress.com/2018/02/25/compiler-bug-linker-bug-windows-kernel-bug/amp
if let & Ok ( ref out ) = command_output {
if out . status . success ( ) {
if let Ok ( of ) = fs ::OpenOptions ::new ( ) . write ( true ) . open ( out_filename ) {
of . sync_all ( ) ? ;
}
}
}
Ok ( ( ) )
}
#[ cfg(unix) ]
fn command_line_too_big ( err : & io ::Error ) -> bool {
err . raw_os_error ( ) = = Some ( ::libc ::E2BIG )
}
#[ cfg(windows) ]
fn command_line_too_big ( err : & io ::Error ) -> bool {
const ERROR_FILENAME_EXCED_RANGE : i32 = 206 ;
err . raw_os_error ( ) = = Some ( ERROR_FILENAME_EXCED_RANGE )
}
struct Escape < ' a > {
arg : & ' a str ,
is_like_msvc : bool ,
}
impl < ' a > fmt ::Display for Escape < ' a > {
fn fmt ( & self , f : & mut fmt ::Formatter ) -> fmt ::Result {
if self . is_like_msvc {
// This is "documented" at
// https://msdn.microsoft.com/en-us/library/4xdcbak7.aspx
//
// Unfortunately there's not a great specification of the
// syntax I could find online (at least) but some local
// testing showed that this seemed sufficient-ish to catch
// at least a few edge cases.
write! ( f , " \" " ) ? ;
for c in self . arg . chars ( ) {
match c {
'"' = > write! ( f , " \\ {} " , c ) ? ,
c = > write! ( f , " {} " , c ) ? ,
}
}
write! ( f , " \" " ) ? ;
} else {
// This is documented at https://linux.die.net/man/1/ld, namely:
//
// > Options in file are separated by whitespace. A whitespace
// > character may be included in an option by surrounding the
// > entire option in either single or double quotes. Any
// > character (including a backslash) may be included by
// > prefixing the character to be included with a backslash.
//
// We put an argument on each line, so all we need to do is
// ensure the line is interpreted as one whole argument.
for c in self . arg . chars ( ) {
match c {
'\\' |
' ' = > write! ( f , " \\ {} " , c ) ? ,
c = > write! ( f , " {} " , c ) ? ,
}
}
}
Ok ( ( ) )
}
}
}
// # Rust Crate linking
//
// Rust crates are not considered at all when creating an rlib output. All
// dependencies will be linked when producing the final output (instead of
// the intermediate rlib version)
pub fn add_upstream_rust_crates ( cmd : & mut dyn Linker ,
sess : & Session ,
codegen_results : & CodegenResults ,
crate_type : config ::CrateType ,
tmpdir : & Path ) {
// All of the heavy lifting has previously been accomplished by the
// dependency_format module of the compiler. This is just crawling the
// output of that module, adding crates as necessary.
//
// Linking to a rlib involves just passing it to the linker (the linker
// will slurp up the object files inside), and linking to a dynamic library
// involves just passing the right -l flag.
let formats = sess . dependency_formats . borrow ( ) ;
let data = formats . get ( & crate_type ) . unwrap ( ) ;
// Invoke get_used_crates to ensure that we get a topological sorting of
// crates.
let deps = & codegen_results . crate_info . used_crates_dynamic ;
// There's a few internal crates in the standard library (aka libcore and
// libstd) which actually have a circular dependence upon one another. This
// currently arises through "weak lang items" where libcore requires things
// like `rust_begin_unwind` but libstd ends up defining it. To get this
// circular dependence to work correctly in all situations we'll need to be
// sure to correctly apply the `--start-group` and `--end-group` options to
// GNU linkers, otherwise if we don't use any other symbol from the standard
// library it'll get discarded and the whole application won't link.
//
// In this loop we're calculating the `group_end`, after which crate to
// pass `--end-group` and `group_start`, before which crate to pass
// `--start-group`. We currently do this by passing `--end-group` after
// the first crate (when iterating backwards) that requires a lang item
// defined somewhere else. Once that's set then when we've defined all the
// necessary lang items we'll pass `--start-group`.
//
// Note that this isn't amazing logic for now but it should do the trick
// for the current implementation of the standard library.
let mut group_end = None ;
let mut group_start = None ;
let mut end_with = FxHashSet ::default ( ) ;
let info = & codegen_results . crate_info ;
for & ( cnum , _ ) in deps . iter ( ) . rev ( ) {
if let Some ( missing ) = info . missing_lang_items . get ( & cnum ) {
end_with . extend ( missing . iter ( ) . cloned ( ) ) ;
if end_with . len ( ) > 0 & & group_end . is_none ( ) {
group_end = Some ( cnum ) ;
}
}
end_with . retain ( | item | info . lang_item_to_crate . get ( item ) ! = Some ( & cnum ) ) ;
if end_with . len ( ) = = 0 & & group_end . is_some ( ) {
group_start = Some ( cnum ) ;
break
}
}
// If we didn't end up filling in all lang items from upstream crates then
// we'll be filling it in with our crate. This probably means we're the
// standard library itself, so skip this for now.
if group_end . is_some ( ) & & group_start . is_none ( ) {
group_end = None ;
}
let mut compiler_builtins = None ;
for & ( cnum , _ ) in deps . iter ( ) {
if group_start = = Some ( cnum ) {
cmd . group_start ( ) ;
}
// We may not pass all crates through to the linker. Some crates may
// appear statically in an existing dylib, meaning we'll pick up all the
// symbols from the dylib.
let src = & codegen_results . crate_info . used_crate_source [ & cnum ] ;
match data [ cnum . as_usize ( ) - 1 ] {
_ if codegen_results . crate_info . profiler_runtime = = Some ( cnum ) = > {
add_static_crate ( cmd , sess , codegen_results , tmpdir , crate_type , cnum ) ;
}
_ if codegen_results . crate_info . sanitizer_runtime = = Some ( cnum ) = > {
link_sanitizer_runtime ( cmd , sess , codegen_results , tmpdir , cnum ) ;
}
// compiler-builtins are always placed last to ensure that they're
// linked correctly.
_ if codegen_results . crate_info . compiler_builtins = = Some ( cnum ) = > {
assert! ( compiler_builtins . is_none ( ) ) ;
compiler_builtins = Some ( cnum ) ;
}
Linkage ::NotLinked |
Linkage ::IncludedFromDylib = > { }
Linkage ::Static = > {
add_static_crate ( cmd , sess , codegen_results , tmpdir , crate_type , cnum ) ;
}
Linkage ::Dynamic = > {
add_dynamic_crate ( cmd , sess , & src . dylib . as_ref ( ) . unwrap ( ) . 0 )
}
}
if group_end = = Some ( cnum ) {
cmd . group_end ( ) ;
}
}
// compiler-builtins are always placed last to ensure that they're
// linked correctly.
// We must always link the `compiler_builtins` crate statically. Even if it
// was already "included" in a dylib (e.g. `libstd` when `-C prefer-dynamic`
// is used)
if let Some ( cnum ) = compiler_builtins {
add_static_crate ( cmd , sess , codegen_results , tmpdir , crate_type , cnum ) ;
}
// Converts a library file-stem into a cc -l argument
fn unlib < ' a > ( config : & config ::Config , stem : & ' a str ) -> & ' a str {
if stem . starts_with ( " lib " ) & & ! config . target . options . is_like_windows {
& stem [ 3 .. ]
} else {
stem
}
}
// We must link the sanitizer runtime using -Wl,--whole-archive but since
// it's packed in a .rlib, it contains stuff that are not objects that will
// make the linker error. So we must remove those bits from the .rlib before
// linking it.
fn link_sanitizer_runtime ( cmd : & mut dyn Linker ,
sess : & Session ,
codegen_results : & CodegenResults ,
tmpdir : & Path ,
cnum : CrateNum ) {
let src = & codegen_results . crate_info . used_crate_source [ & cnum ] ;
let cratepath = & src . rlib . as_ref ( ) . unwrap ( ) . 0 ;
if sess . target . target . options . is_like_osx {
// On Apple platforms, the sanitizer is always built as a dylib, and
// LLVM will link to `@rpath/*.dylib`, so we need to specify an
// rpath to the library as well (the rpath should be absolute, see
// PR #41352 for details).
//
// FIXME: Remove this logic into librustc_*san once Cargo supports it
let rpath = cratepath . parent ( ) . unwrap ( ) ;
let rpath = rpath . to_str ( ) . expect ( " non-utf8 component in path " ) ;
cmd . args ( & [ " -Wl,-rpath " . into ( ) , " -Xlinker " . into ( ) , rpath . into ( ) ] ) ;
}
let dst = tmpdir . join ( cratepath . file_name ( ) . unwrap ( ) ) ;
let cfg = archive_config ( sess , & dst , Some ( cratepath ) ) ;
let mut archive = ArchiveBuilder ::new ( cfg ) ;
archive . update_symbols ( ) ;
for f in archive . src_files ( ) {
if f . ends_with ( RLIB_BYTECODE_EXTENSION ) | | f = = METADATA_FILENAME {
archive . remove_file ( & f ) ;
continue
}
}
archive . build ( ) ;
cmd . link_whole_rlib ( & dst ) ;
}
// Adds the static "rlib" versions of all crates to the command line.
// There's a bit of magic which happens here specifically related to LTO and
// dynamic libraries. Specifically:
//
// * For LTO, we remove upstream object files.
// * For dylibs we remove metadata and bytecode from upstream rlibs
//
// When performing LTO, almost(*) all of the bytecode from the upstream
// libraries has already been included in our object file output. As a
// result we need to remove the object files in the upstream libraries so
// the linker doesn't try to include them twice (or whine about duplicate
// symbols). We must continue to include the rest of the rlib, however, as
// it may contain static native libraries which must be linked in.
//
// (*) Crates marked with `#![no_builtins]` don't participate in LTO and
// their bytecode wasn't included. The object files in those libraries must
// still be passed to the linker.
//
// When making a dynamic library, linkers by default don't include any
// object files in an archive if they're not necessary to resolve the link.
// We basically want to convert the archive (rlib) to a dylib, though, so we
// *do* want everything included in the output, regardless of whether the
// linker thinks it's needed or not. As a result we must use the
// --whole-archive option (or the platform equivalent). When using this
// option the linker will fail if there are non-objects in the archive (such
// as our own metadata and/or bytecode). All in all, for rlibs to be
// entirely included in dylibs, we need to remove all non-object files.
//
// Note, however, that if we're not doing LTO or we're not producing a dylib
// (aka we're making an executable), we can just pass the rlib blindly to
// the linker (fast) because it's fine if it's not actually included as
// we're at the end of the dependency chain.
fn add_static_crate ( cmd : & mut dyn Linker ,
sess : & Session ,
codegen_results : & CodegenResults ,
tmpdir : & Path ,
crate_type : config ::CrateType ,
cnum : CrateNum ) {
let src = & codegen_results . crate_info . used_crate_source [ & cnum ] ;
let cratepath = & src . rlib . as_ref ( ) . unwrap ( ) . 0 ;
// See the comment above in `link_staticlib` and `link_rlib` for why if
// there's a static library that's not relevant we skip all object
// files.
let native_libs = & codegen_results . crate_info . native_libraries [ & cnum ] ;
let skip_native = native_libs . iter ( ) . any ( | lib | {
lib . kind = = NativeLibraryKind ::NativeStatic & & ! relevant_lib ( sess , lib )
} ) ;
if ( ! are_upstream_rust_objects_already_included ( sess ) | |
ignored_for_lto ( sess , & codegen_results . crate_info , cnum ) ) & &
crate_type ! = config ::CrateType ::Dylib & &
! skip_native {
cmd . link_rlib ( & fix_windows_verbatim_for_gcc ( cratepath ) ) ;
return
}
let dst = tmpdir . join ( cratepath . file_name ( ) . unwrap ( ) ) ;
let name = cratepath . file_name ( ) . unwrap ( ) . to_str ( ) . unwrap ( ) ;
let name = & name [ 3 .. name . len ( ) - 5 ] ; // chop off lib/.rlib
time ( sess , & format! ( " altering {} .rlib " , name ) , | | {
let cfg = archive_config ( sess , & dst , Some ( cratepath ) ) ;
let mut archive = ArchiveBuilder ::new ( cfg ) ;
archive . update_symbols ( ) ;
let mut any_objects = false ;
for f in archive . src_files ( ) {
if f . ends_with ( RLIB_BYTECODE_EXTENSION ) | | f = = METADATA_FILENAME {
archive . remove_file ( & f ) ;
continue
}
let canonical = f . replace ( " - " , " _ " ) ;
let canonical_name = name . replace ( " - " , " _ " ) ;
// Look for `.rcgu.o` at the end of the filename to conclude
// that this is a Rust-related object file.
fn looks_like_rust ( s : & str ) -> bool {
let path = Path ::new ( s ) ;
let ext = path . extension ( ) . and_then ( | s | s . to_str ( ) ) ;
if ext ! = Some ( OutputType ::Object . extension ( ) ) {
return false
}
let ext2 = path . file_stem ( )
. and_then ( | s | Path ::new ( s ) . extension ( ) )
. and_then ( | s | s . to_str ( ) ) ;
ext2 = = Some ( RUST_CGU_EXT )
}
let is_rust_object =
canonical . starts_with ( & canonical_name ) & &
looks_like_rust ( & f ) ;
// If we've been requested to skip all native object files
// (those not generated by the rust compiler) then we can skip
// this file. See above for why we may want to do this.
let skip_because_cfg_say_so = skip_native & & ! is_rust_object ;
// If we're performing LTO and this is a rust-generated object
// file, then we don't need the object file as it's part of the
// LTO module. Note that `#![no_builtins]` is excluded from LTO,
// though, so we let that object file slide.
let skip_because_lto = are_upstream_rust_objects_already_included ( sess ) & &
is_rust_object & &
( sess . target . target . options . no_builtins | |
! codegen_results . crate_info . is_no_builtins . contains ( & cnum ) ) ;
if skip_because_cfg_say_so | | skip_because_lto {
archive . remove_file ( & f ) ;
} else {
any_objects = true ;
}
}
if ! any_objects {
return
}
archive . build ( ) ;
// If we're creating a dylib, then we need to include the
// whole of each object in our archive into that artifact. This is
// because a `dylib` can be reused as an intermediate artifact.
//
// Note, though, that we don't want to include the whole of a
// compiler-builtins crate (e.g. compiler-rt) because it'll get
// repeatedly linked anyway.
if crate_type = = config ::CrateType ::Dylib & &
codegen_results . crate_info . compiler_builtins ! = Some ( cnum ) {
cmd . link_whole_rlib ( & fix_windows_verbatim_for_gcc ( & dst ) ) ;
} else {
cmd . link_rlib ( & fix_windows_verbatim_for_gcc ( & dst ) ) ;
}
} ) ;
}
// Same thing as above, but for dynamic crates instead of static crates.
fn add_dynamic_crate ( cmd : & mut dyn Linker , sess : & Session , cratepath : & Path ) {
// If we're performing LTO, then it should have been previously required
// that all upstream rust dependencies were available in an rlib format.
assert! ( ! are_upstream_rust_objects_already_included ( sess ) ) ;
// Just need to tell the linker about where the library lives and
// what its name is
let parent = cratepath . parent ( ) ;
if let Some ( dir ) = parent {
cmd . include_path ( & fix_windows_verbatim_for_gcc ( dir ) ) ;
}
let filestem = cratepath . file_stem ( ) . unwrap ( ) . to_str ( ) . unwrap ( ) ;
cmd . link_rust_dylib ( & unlib ( & sess . target , filestem ) ,
parent . unwrap_or ( Path ::new ( " " ) ) ) ;
}
}
// # Native library linking
//
// User-supplied library search paths (-L on the command line). These are
// the same paths used to find Rust crates, so some of them may have been
// added already by the previous crate linking code. This only allows them
// to be found at compile time so it is still entirely up to outside
// forces to make sure that library can be found at runtime.
//
// Also note that the native libraries linked here are only the ones located
// in the current crate. Upstream crates with native library dependencies
// may have their native library pulled in above.
pub fn add_local_native_libraries ( cmd : & mut dyn Linker ,
sess : & Session ,
codegen_results : & CodegenResults ) {
sess . target_filesearch ( PathKind ::All ) . for_each_lib_search_path ( | path , k | {
match k {
PathKind ::Framework = > { cmd . framework_path ( path ) ; }
_ = > { cmd . include_path ( & fix_windows_verbatim_for_gcc ( path ) ) ; }
}
} ) ;
let relevant_libs = codegen_results . crate_info . used_libraries . iter ( ) . filter ( | l | {
relevant_lib ( sess , l )
} ) ;
let search_path = archive_search_paths ( sess ) ;
for lib in relevant_libs {
let name = match lib . name {
Some ( ref l ) = > l ,
None = > continue ,
} ;
match lib . kind {
NativeLibraryKind ::NativeUnknown = > cmd . link_dylib ( & name . as_str ( ) ) ,
NativeLibraryKind ::NativeFramework = > cmd . link_framework ( & name . as_str ( ) ) ,
NativeLibraryKind ::NativeStaticNobundle = > cmd . link_staticlib ( & name . as_str ( ) ) ,
NativeLibraryKind ::NativeStatic = > cmd . link_whole_staticlib ( & name . as_str ( ) ,
& search_path )
}
}
}
// Link in all of our upstream crates' native dependencies. Remember that
// all of these upstream native dependencies are all non-static
// dependencies. We've got two cases then:
//
// 1. The upstream crate is an rlib. In this case we *must* link in the
// native dependency because the rlib is just an archive.
//
// 2. The upstream crate is a dylib. In order to use the dylib, we have to
// have the dependency present on the system somewhere. Thus, we don't
// gain a whole lot from not linking in the dynamic dependency to this
// crate as well.
//
// The use case for this is a little subtle. In theory the native
// dependencies of a crate are purely an implementation detail of the crate
// itself, but the problem arises with generic and inlined functions. If a
// generic function calls a native function, then the generic function must
// be instantiated in the target crate, meaning that the native symbol must
// also be resolved in the target crate.
pub fn add_upstream_native_libraries ( cmd : & mut dyn Linker ,
sess : & Session ,
codegen_results : & CodegenResults ,
crate_type : config ::CrateType ) {
// Be sure to use a topological sorting of crates because there may be
// interdependencies between native libraries. When passing -nodefaultlibs,
// for example, almost all native libraries depend on libc, so we have to
// make sure that's all the way at the right (liblibc is near the base of
// the dependency chain).
//
// This passes RequireStatic, but the actual requirement doesn't matter,
// we're just getting an ordering of crate numbers, we're not worried about
// the paths.
let formats = sess . dependency_formats . borrow ( ) ;
let data = formats . get ( & crate_type ) . unwrap ( ) ;
let crates = & codegen_results . crate_info . used_crates_static ;
for & ( cnum , _ ) in crates {
for lib in codegen_results . crate_info . native_libraries [ & cnum ] . iter ( ) {
let name = match lib . name {
Some ( ref l ) = > l ,
None = > continue ,
} ;
if ! relevant_lib ( sess , & lib ) {
continue
}
match lib . kind {
NativeLibraryKind ::NativeUnknown = > cmd . link_dylib ( & name . as_str ( ) ) ,
NativeLibraryKind ::NativeFramework = > cmd . link_framework ( & name . as_str ( ) ) ,
NativeLibraryKind ::NativeStaticNobundle = > {
// Link "static-nobundle" native libs only if the crate they originate from
// is being linked statically to the current crate. If it's linked dynamically
// or is an rlib already included via some other dylib crate, the symbols from
// native libs will have already been included in that dylib.
if data [ cnum . as_usize ( ) - 1 ] = = Linkage ::Static {
cmd . link_staticlib ( & name . as_str ( ) )
}
} ,
// ignore statically included native libraries here as we've
// already included them when we included the rust library
// previously
NativeLibraryKind ::NativeStatic = > { }
}
}
}
}
/// Returns a boolean indicating whether the specified crate should be ignored
/// during LTO.
///
/// Crates ignored during LTO are not lumped together in the "massive object
/// file" that we create and are linked in their normal rlib states. See
/// comments below for what crates do not participate in LTO.
///
/// It's unusual for a crate to not participate in LTO. Typically only
/// compiler-specific and unstable crates have a reason to not participate in
/// LTO.
fn ignored_for_lto ( sess : & Session , info : & CrateInfo , cnum : CrateNum ) -> bool {
// If our target enables builtin function lowering in LLVM then the
// crates providing these functions don't participate in LTO (e.g.
// no_builtins or compiler builtins crates).
! sess . target . target . options . no_builtins & &
( info . is_no_builtins . contains ( & cnum ) | | info . compiler_builtins = = Some ( cnum ) )
}
fn relevant_lib ( sess : & Session , lib : & NativeLibrary ) -> bool {
match lib . cfg {
Some ( ref cfg ) = > attr ::cfg_matches ( cfg , & sess . parse_sess , None ) ,
None = > true ,
}
}
fn are_upstream_rust_objects_already_included ( sess : & Session ) -> bool {
match sess . lto ( ) {
Lto ::Fat = > true ,
Lto ::Thin = > {
// If we defer LTO to the linker, we haven't run LTO ourselves, so
// any upstream object files have not been copied yet.
! sess . opts . debugging_opts . cross_lang_lto . enabled ( )
}
Lto ::No |
Lto ::ThinLocal = > false ,
}
}