rust/clippy_lints/src/mut_key.rs

206 lines
8.3 KiB
Rust
Raw Normal View History

use clippy_utils::diagnostics::span_lint;
use clippy_utils::{def_path_def_ids, trait_ref_of_method};
use rustc_data_structures::fx::FxHashSet;
2020-01-06 10:39:50 -06:00
use rustc_hir as hir;
2020-01-12 00:08:41 -06:00
use rustc_lint::{LateContext, LateLintPass};
2023-02-21 20:18:40 -06:00
use rustc_middle::ty::TypeVisitableExt;
use rustc_middle::ty::{Adt, Array, Ref, Slice, Tuple, Ty};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::def_id::LocalDefId;
use rustc_span::source_map::Span;
use rustc_span::symbol::sym;
2021-03-08 17:57:44 -06:00
use std::iter;
2019-12-06 12:45:33 -06:00
declare_clippy_lint! {
/// ### What it does
/// Checks for sets/maps with mutable key types.
2019-12-06 12:45:33 -06:00
///
/// ### Why is this bad?
/// All of `HashMap`, `HashSet`, `BTreeMap` and
2019-12-06 12:45:33 -06:00
/// `BtreeSet` rely on either the hash or the order of keys be unchanging,
/// so having types with interior mutability is a bad idea.
///
/// ### Known problems
///
/// #### False Positives
/// It's correct to use a struct that contains interior mutability as a key, when its
/// implementation of `Hash` or `Ord` doesn't access any of the interior mutable types.
/// However, this lint is unable to recognize this, so it will often cause false positives in
/// theses cases. The `bytes` crate is a great example of this.
///
/// #### False Negatives
/// For custom `struct`s/`enum`s, this lint is unable to check for interior mutability behind
/// indirection. For example, `struct BadKey<'a>(&'a Cell<usize>)` will be seen as immutable
/// and cause a false negative if its implementation of `Hash`/`Ord` accesses the `Cell`.
///
/// This lint does check a few cases for indirection. Firstly, using some standard library
/// types (`Option`, `Result`, `Box`, `Rc`, `Arc`, `Vec`, `VecDeque`, `BTreeMap` and
/// `BTreeSet`) directly as keys (e.g. in `HashMap<Box<Cell<usize>>, ()>`) **will** trigger the
/// lint, because the impls of `Hash`/`Ord` for these types directly call `Hash`/`Ord` on their
/// contained type.
///
/// Secondly, the implementations of `Hash` and `Ord` for raw pointers (`*const T` or `*mut T`)
/// apply only to the **address** of the contained value. Therefore, interior mutability
/// behind raw pointers (e.g. in `HashSet<*mut Cell<usize>>`) can't impact the value of `Hash`
/// or `Ord`, and therefore will not trigger this link. For more info, see issue
/// [#6745](https://github.com/rust-lang/rust-clippy/issues/6745).
2019-12-06 12:45:33 -06:00
///
/// ### Example
2019-12-06 12:45:33 -06:00
/// ```rust
/// use std::cmp::{PartialEq, Eq};
/// use std::collections::HashSet;
/// use std::hash::{Hash, Hasher};
/// use std::sync::atomic::AtomicUsize;
///# #[allow(unused)]
///
/// struct Bad(AtomicUsize);
/// impl PartialEq for Bad {
/// fn eq(&self, rhs: &Self) -> bool {
/// ..
/// ; unimplemented!();
/// }
/// }
///
/// impl Eq for Bad {}
///
/// impl Hash for Bad {
/// fn hash<H: Hasher>(&self, h: &mut H) {
/// ..
/// ; unimplemented!();
/// }
/// }
///
/// fn main() {
/// let _: HashSet<Bad> = HashSet::new();
/// }
/// ```
#[clippy::version = "1.42.0"]
2019-12-06 12:45:33 -06:00
pub MUTABLE_KEY_TYPE,
suspicious,
2020-01-06 00:30:43 -06:00
"Check for mutable `Map`/`Set` key type"
2019-12-06 12:45:33 -06:00
}
#[derive(Clone)]
pub struct MutableKeyType {
ignore_interior_mutability: Vec<String>,
ignore_mut_def_ids: FxHashSet<hir::def_id::DefId>,
}
impl_lint_pass!(MutableKeyType => [ MUTABLE_KEY_TYPE ]);
2019-12-06 12:45:33 -06:00
impl<'tcx> LateLintPass<'tcx> for MutableKeyType {
fn check_crate(&mut self, cx: &LateContext<'tcx>) {
self.ignore_mut_def_ids.clear();
let mut path = Vec::new();
for ty in &self.ignore_interior_mutability {
path.extend(ty.split("::"));
for id in def_path_def_ids(cx, &path[..]) {
self.ignore_mut_def_ids.insert(id);
}
path.clear();
}
}
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
2019-12-06 12:45:33 -06:00
if let hir::ItemKind::Fn(ref sig, ..) = item.kind {
self.check_sig(cx, item.owner_id.def_id, sig.decl);
2019-12-06 12:45:33 -06:00
}
}
fn check_impl_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::ImplItem<'tcx>) {
if let hir::ImplItemKind::Fn(ref sig, ..) = item.kind {
if trait_ref_of_method(cx, item.owner_id.def_id).is_none() {
self.check_sig(cx, item.owner_id.def_id, sig.decl);
2019-12-06 12:45:33 -06:00
}
}
}
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::TraitItem<'tcx>) {
2020-03-12 14:56:55 -05:00
if let hir::TraitItemKind::Fn(ref sig, ..) = item.kind {
self.check_sig(cx, item.owner_id.def_id, sig.decl);
2019-12-06 12:45:33 -06:00
}
}
fn check_local(&mut self, cx: &LateContext<'_>, local: &hir::Local<'_>) {
2019-12-06 12:45:33 -06:00
if let hir::PatKind::Wild = local.pat.kind {
return;
}
self.check_ty_(cx, local.span, cx.typeck_results().pat_ty(local.pat));
2019-12-06 12:45:33 -06:00
}
}
impl MutableKeyType {
pub fn new(ignore_interior_mutability: Vec<String>) -> Self {
Self {
ignore_interior_mutability,
ignore_mut_def_ids: FxHashSet::default(),
}
2019-12-06 12:45:33 -06:00
}
fn check_sig(&self, cx: &LateContext<'_>, fn_def_id: LocalDefId, decl: &hir::FnDecl<'_>) {
let fn_sig = cx.tcx.fn_sig(fn_def_id).subst_identity();
for (hir_ty, ty) in iter::zip(decl.inputs, fn_sig.inputs().skip_binder()) {
self.check_ty_(cx, hir_ty.span, *ty);
2019-12-06 12:45:33 -06:00
}
self.check_ty_(cx, decl.output.span(), cx.tcx.erase_late_bound_regions(fn_sig.output()));
2019-12-06 12:45:33 -06:00
}
// We want to lint 1. sets or maps with 2. not immutable key types and 3. no unerased
// generics (because the compiler cannot ensure immutability for unknown types).
fn check_ty_<'tcx>(&self, cx: &LateContext<'tcx>, span: Span, ty: Ty<'tcx>) {
let ty = ty.peel_refs();
if let Adt(def, substs) = ty.kind() {
let is_keyed_type = [sym::HashMap, sym::BTreeMap, sym::HashSet, sym::BTreeSet]
.iter()
.any(|diag_item| cx.tcx.is_diagnostic_item(*diag_item, def.did()));
if is_keyed_type && self.is_interior_mutable_type(cx, substs.type_at(0)) {
span_lint(cx, MUTABLE_KEY_TYPE, span, "mutable key type");
}
2022-10-27 09:32:17 -05:00
}
}
/// Determines if a type contains interior mutability which would affect its implementation of
/// [`Hash`] or [`Ord`].
fn is_interior_mutable_type<'tcx>(&self, cx: &LateContext<'tcx>, ty: Ty<'tcx>) -> bool {
match *ty.kind() {
Ref(_, inner_ty, mutbl) => mutbl == hir::Mutability::Mut || self.is_interior_mutable_type(cx, inner_ty),
Slice(inner_ty) => self.is_interior_mutable_type(cx, inner_ty),
Array(inner_ty, size) => {
size.try_eval_target_usize(cx.tcx, cx.param_env)
.map_or(true, |u| u != 0)
&& self.is_interior_mutable_type(cx, inner_ty)
},
Tuple(fields) => fields.iter().any(|ty| self.is_interior_mutable_type(cx, ty)),
Adt(def, substs) => {
// Special case for collections in `std` who's impl of `Hash` or `Ord` delegates to
// that of their type parameters. Note: we don't include `HashSet` and `HashMap`
// because they have no impl for `Hash` or `Ord`.
let def_id = def.did();
let is_std_collection = [
sym::Option,
sym::Result,
sym::LinkedList,
sym::Vec,
sym::VecDeque,
sym::BTreeMap,
sym::BTreeSet,
sym::Rc,
sym::Arc,
]
.iter()
.any(|diag_item| cx.tcx.is_diagnostic_item(*diag_item, def_id));
let is_box = Some(def_id) == cx.tcx.lang_items().owned_box();
if is_std_collection || is_box || self.ignore_mut_def_ids.contains(&def_id) {
// The type is mutable if any of its type parameters are
substs.types().any(|ty| self.is_interior_mutable_type(cx, ty))
} else {
!ty.has_escaping_bound_vars()
&& cx.tcx.layout_of(cx.param_env.and(ty)).is_ok()
&& !ty.is_freeze(cx.tcx, cx.param_env)
}
},
_ => false,
}
2019-12-06 12:45:33 -06:00
}
}