338 lines
10 KiB
Rust
Raw Normal View History

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::ArgKind::*;
use llvm::{self, AttrHelper, ValueRef};
use trans::attributes;
use trans::common::{return_type_is_void, type_is_fat_ptr};
use trans::context::CrateContext;
use trans::cabi_x86;
use trans::cabi_x86_64;
use trans::cabi_x86_win64;
use trans::cabi_arm;
use trans::cabi_aarch64;
2015-01-09 20:13:23 -08:00
use trans::cabi_powerpc;
use trans::cabi_powerpc64;
use trans::cabi_mips;
use trans::cabi_asmjs;
use trans::machine::llsize_of_alloc;
use trans::type_::Type;
use trans::type_of;
use middle::ty::{self, Ty};
pub use syntax::abi::Abi;
/// The first half of a fat pointer.
/// - For a closure, this is the code address.
/// - For an object or trait instance, this is the address of the box.
/// - For a slice, this is the base address.
pub const FAT_PTR_ADDR: usize = 0;
/// The second half of a fat pointer.
/// - For a closure, this is the address of the environment.
/// - For an object or trait instance, this is the address of the vtable.
/// - For a slice, this is the length.
pub const FAT_PTR_EXTRA: usize = 1;
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum ArgKind {
/// Pass the argument directly using the normal converted
/// LLVM type or by coercing to another specified type
Direct,
/// Pass the argument indirectly via a hidden pointer
Indirect,
/// Ignore the argument (useful for empty struct)
Ignore,
}
/// Information about how a specific C type
/// should be passed to or returned from a function
///
/// This is borrowed from clang's ABIInfo.h
#[derive(Clone, Copy, Debug)]
pub struct ArgType {
pub kind: ArgKind,
/// Original LLVM type
pub ty: Type,
/// Coerced LLVM Type
pub cast: Option<Type>,
/// Dummy argument, which is emitted before the real argument
pub pad: Option<Type>,
/// LLVM attribute of argument
pub attr: Option<llvm::Attribute>
}
impl ArgType {
pub fn direct(ty: Type, cast: Option<Type>,
pad: Option<Type>,
attr: Option<llvm::Attribute>) -> ArgType {
ArgType {
kind: Direct,
ty: ty,
cast: cast,
pad: pad,
attr: attr
}
}
pub fn indirect(ty: Type, attr: Option<llvm::Attribute>) -> ArgType {
ArgType {
kind: Indirect,
ty: ty,
cast: Option::None,
pad: Option::None,
attr: attr
}
}
pub fn ignore(ty: Type) -> ArgType {
ArgType {
kind: Ignore,
ty: ty,
cast: None,
pad: None,
attr: None,
}
}
pub fn is_indirect(&self) -> bool {
return self.kind == Indirect;
}
pub fn is_ignore(&self) -> bool {
return self.kind == Ignore;
}
}
fn c_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, ty: Ty<'tcx>) -> Type {
if ty.is_bool() {
Type::i1(cx)
} else {
type_of::type_of(cx, ty)
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
pub struct FnType {
/// The LLVM types of each argument.
pub args: Vec<ArgType>,
/// LLVM return type.
pub ret: ArgType,
pub variadic: bool,
pub cconv: llvm::CallConv
}
impl FnType {
pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
use self::Abi::*;
let cconv = match ccx.sess().target.target.adjust_abi(abi) {
RustIntrinsic => {
// Intrinsics are emitted at the call site
ccx.sess().bug("asked to compute FnType of intrinsic");
}
PlatformIntrinsic => {
// Intrinsics are emitted at the call site
ccx.sess().bug("asked to compute FnType of platform intrinsic");
}
Rust | RustCall => llvm::CCallConv,
// It's the ABI's job to select this, not us.
System => ccx.sess().bug("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
Vectorcall => llvm::X86_VectorCall,
C => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
Aapcs => llvm::CCallConv,
};
let rty = match sig.output {
ty::FnConverging(ret_ty) if !return_type_is_void(ccx, ret_ty) => {
c_type_of(ccx, ret_ty)
}
_ => Type::void(ccx)
};
let mut inputs = &sig.inputs[..];
let extra_args = if abi == RustCall {
assert!(!sig.variadic && extra_args.is_empty());
match inputs[inputs.len() - 1].sty {
ty::TyTuple(ref tupled_arguments) => {
inputs = &inputs[..inputs.len() - 1];
&tupled_arguments[..]
}
_ => {
unreachable!("argument to function with \"rust-call\" ABI \
is not a tuple");
}
}
} else {
assert!(sig.variadic || extra_args.is_empty());
extra_args
};
let mut args = Vec::with_capacity(inputs.len() + extra_args.len());
for ty in inputs.iter().chain(extra_args.iter()) {
let llty = c_type_of(ccx, ty);
if type_is_fat_ptr(ccx.tcx(), ty) {
args.extend(llty.field_types().into_iter().map(|llty| {
ArgType::direct(llty, None, None, None)
}));
} else {
args.push(ArgType::direct(llty, None, None, None));
}
}
let mut fty = FnType {
args: args,
ret: ArgType::direct(rty, None, None, None),
variadic: sig.variadic,
cconv: cconv
};
if abi == Rust || abi == RustCall {
let fixup = |arg: &mut ArgType| {
if !arg.ty.is_aggregate() {
// Scalars and vectors, always immediate.
return;
}
let size = llsize_of_alloc(ccx, arg.ty);
if size > llsize_of_alloc(ccx, ccx.int_type()) {
arg.kind = Indirect;
} else if size > 0 {
// We want to pass small aggregates as immediates, but using
// a LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast = Some(Type::ix(ccx, size * 8));
}
};
if let ty::FnConverging(ret_ty) = sig.output {
// Fat pointers are returned by-value.
if !type_is_fat_ptr(ccx.tcx(), ret_ty) &&
fty.ret.ty != Type::void(ccx) {
fixup(&mut fty.ret);
}
};
for arg in &mut fty.args {
fixup(arg);
}
return fty;
}
match &ccx.sess().target.target.arch[..] {
"x86" => cabi_x86::compute_abi_info(ccx, &mut fty),
"x86_64" => if ccx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(ccx, &mut fty);
} else {
cabi_x86_64::compute_abi_info(ccx, &mut fty);
},
"aarch64" => cabi_aarch64::compute_abi_info(ccx, &mut fty),
"arm" => {
let flavor = if ccx.sess().target.target.target_os == "ios" {
cabi_arm::Flavor::Ios
} else {
cabi_arm::Flavor::General
};
cabi_arm::compute_abi_info(ccx, &mut fty, flavor);
},
"mips" => cabi_mips::compute_abi_info(ccx, &mut fty),
"powerpc" => cabi_powerpc::compute_abi_info(ccx, &mut fty),
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, &mut fty),
"asmjs" => cabi_asmjs::compute_abi_info(ccx, &mut fty),
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
fty
}
pub fn to_llvm(&self, ccx: &CrateContext) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = if self.ret.is_indirect() {
llargument_tys.push(self.ret.ty.ptr_to());
Type::void(ccx)
} else {
self.ret.cast.unwrap_or(self.ret.ty)
};
for arg in &self.args {
if arg.is_ignore() {
continue;
}
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty);
}
let llarg_ty = if arg.is_indirect() {
arg.ty.ptr_to()
} else {
arg.cast.unwrap_or(arg.ty)
};
llargument_tys.push(llarg_ty);
}
if self.variadic {
Type::variadic_func(&llargument_tys, &llreturn_ty)
} else {
Type::func(&llargument_tys, &llreturn_ty)
}
}
pub fn add_attributes(&self, llfn: ValueRef) {
let mut i = if self.ret.is_indirect() {
1
} else {
0
};
if let Some(attr) = self.ret.attr {
attr.apply_llfn(i, llfn);
}
i += 1;
for arg in &self.args {
if arg.is_ignore() {
continue;
}
// skip padding
if arg.pad.is_some() { i += 1; }
if let Some(attr) = arg.attr {
attr.apply_llfn(i, llfn);
}
i += 1;
}
attributes::unwind(llfn, false);
}
}