2022-02-20 23:25:18 -08:00
|
|
|
|
// compile-flags: -O
|
|
|
|
|
// only-x86_64
|
|
|
|
|
// ignore-debug: the debug assertions get in the way
|
|
|
|
|
|
|
|
|
|
#![crate_type = "lib"]
|
|
|
|
|
|
|
|
|
|
use std::mem::swap;
|
|
|
|
|
use std::ptr::{read, copy_nonoverlapping, write};
|
|
|
|
|
|
|
|
|
|
type KeccakBuffer = [[u64; 5]; 5];
|
|
|
|
|
|
|
|
|
|
// A basic read+copy+write swap implementation ends up copying one of the values
|
|
|
|
|
// to stack for large types, which is completely unnecessary as the lack of
|
|
|
|
|
// overlap means we can just do whatever fits in registers at a time.
|
|
|
|
|
|
|
|
|
|
// CHECK-LABEL: @swap_basic
|
|
|
|
|
#[no_mangle]
|
|
|
|
|
pub fn swap_basic(x: &mut KeccakBuffer, y: &mut KeccakBuffer) {
|
|
|
|
|
// CHECK: alloca [5 x [5 x i64]]
|
|
|
|
|
|
|
|
|
|
// SAFETY: exclusive references are always valid to read/write,
|
|
|
|
|
// are non-overlapping, and nothing here panics so it's drop-safe.
|
|
|
|
|
unsafe {
|
|
|
|
|
let z = read(x);
|
|
|
|
|
copy_nonoverlapping(y, x, 1);
|
|
|
|
|
write(y, z);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// This test verifies that the library does something smarter, and thus
|
|
|
|
|
// doesn't need any scratch space on the stack.
|
|
|
|
|
|
|
|
|
|
// CHECK-LABEL: @swap_std
|
|
|
|
|
#[no_mangle]
|
|
|
|
|
pub fn swap_std(x: &mut KeccakBuffer, y: &mut KeccakBuffer) {
|
|
|
|
|
// CHECK-NOT: alloca
|
|
|
|
|
// CHECK: load <{{[0-9]+}} x i64>
|
|
|
|
|
// CHECK: store <{{[0-9]+}} x i64>
|
|
|
|
|
swap(x, y)
|
|
|
|
|
}
|
|
|
|
|
|
2022-02-26 18:57:15 -08:00
|
|
|
|
// Verify that types with usize alignment are swapped via vectored usizes,
|
|
|
|
|
// not falling back to byte-level code.
|
|
|
|
|
|
2022-02-20 23:25:18 -08:00
|
|
|
|
// CHECK-LABEL: @swap_slice
|
|
|
|
|
#[no_mangle]
|
|
|
|
|
pub fn swap_slice(x: &mut [KeccakBuffer], y: &mut [KeccakBuffer]) {
|
|
|
|
|
// CHECK-NOT: alloca
|
|
|
|
|
// CHECK: load <{{[0-9]+}} x i64>
|
|
|
|
|
// CHECK: store <{{[0-9]+}} x i64>
|
|
|
|
|
if x.len() == y.len() {
|
|
|
|
|
x.swap_with_slice(y);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2022-02-26 18:57:15 -08:00
|
|
|
|
// But for a large align-1 type, vectorized byte copying is what we want.
|
|
|
|
|
|
2022-02-20 23:25:18 -08:00
|
|
|
|
type OneKilobyteBuffer = [u8; 1024];
|
|
|
|
|
|
|
|
|
|
// CHECK-LABEL: @swap_1kb_slices
|
|
|
|
|
#[no_mangle]
|
|
|
|
|
pub fn swap_1kb_slices(x: &mut [OneKilobyteBuffer], y: &mut [OneKilobyteBuffer]) {
|
|
|
|
|
// CHECK-NOT: alloca
|
|
|
|
|
// CHECK: load <{{[0-9]+}} x i8>
|
|
|
|
|
// CHECK: store <{{[0-9]+}} x i8>
|
|
|
|
|
if x.len() == y.len() {
|
|
|
|
|
x.swap_with_slice(y);
|
|
|
|
|
}
|
|
|
|
|
}
|
2022-02-26 18:57:15 -08:00
|
|
|
|
|
|
|
|
|
// This verifies that the 2×read + 2×write optimizes to just 3 memcpys
|
|
|
|
|
// for an unusual type like this. It's not clear whether we should do anything
|
|
|
|
|
// smarter in Rust for these, so for now it's fine to leave these up to the backend.
|
|
|
|
|
// That's not as bad as it might seem, as for example, LLVM will lower the
|
|
|
|
|
// memcpys below to VMOVAPS on YMMs if one enables the AVX target feature.
|
|
|
|
|
// Eventually we'll be able to pass `align_of::<T>` to a const generic and
|
|
|
|
|
// thus pick a smarter chunk size ourselves without huge code duplication.
|
|
|
|
|
|
|
|
|
|
#[repr(align(64))]
|
|
|
|
|
pub struct BigButHighlyAligned([u8; 64 * 3]);
|
|
|
|
|
|
|
|
|
|
// CHECK-LABEL: @swap_big_aligned
|
|
|
|
|
#[no_mangle]
|
|
|
|
|
pub fn swap_big_aligned(x: &mut BigButHighlyAligned, y: &mut BigButHighlyAligned) {
|
|
|
|
|
// CHECK-NOT: call void @llvm.memcpy
|
2022-02-21 11:21:23 +01:00
|
|
|
|
// CHECK: call void @llvm.memcpy.{{.+}}({{i8\*|ptr}} noundef nonnull align 64 dereferenceable(192)
|
|
|
|
|
// CHECK: call void @llvm.memcpy.{{.+}}({{i8\*|ptr}} noundef nonnull align 64 dereferenceable(192)
|
|
|
|
|
// CHECK: call void @llvm.memcpy.{{.+}}({{i8\*|ptr}} noundef nonnull align 64 dereferenceable(192)
|
2022-02-26 18:57:15 -08:00
|
|
|
|
// CHECK-NOT: call void @llvm.memcpy
|
|
|
|
|
swap(x, y)
|
|
|
|
|
}
|