rust/library/core/tests/num/int_sqrt.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

249 lines
10 KiB
Rust
Raw Permalink Normal View History

macro_rules! tests {
($isqrt_consistency_check_fn_macro:ident : $($T:ident)+) => {
$(
mod $T {
$isqrt_consistency_check_fn_macro!($T);
// Check that the following produce the correct values from
// `isqrt`:
//
// * the first and last 128 nonnegative values
// * powers of two, minus one
// * powers of two
//
// For signed types, check that `checked_isqrt` and `isqrt`
// either produce the same numeric value or respectively
// produce `None` and a panic. Make sure to do a consistency
// check for `<$T>::MIN` as well, as no nonnegative values
// negate to it.
//
// For unsigned types check that `isqrt` produces the same
// numeric value for `$T` and `NonZero<$T>`.
#[test]
fn isqrt() {
isqrt_consistency_check(<$T>::MIN);
for n in (0..=127)
.chain(<$T>::MAX - 127..=<$T>::MAX)
.chain((0..<$T>::MAX.count_ones()).map(|exponent| (1 << exponent) - 1))
.chain((0..<$T>::MAX.count_ones()).map(|exponent| 1 << exponent))
{
isqrt_consistency_check(n);
let isqrt_n = n.isqrt();
assert!(
isqrt_n
.checked_mul(isqrt_n)
.map(|isqrt_n_squared| isqrt_n_squared <= n)
.unwrap_or(false),
"`{n}.isqrt()` should be lower than {isqrt_n}."
);
assert!(
(isqrt_n + 1)
.checked_mul(isqrt_n + 1)
.map(|isqrt_n_plus_1_squared| n < isqrt_n_plus_1_squared)
.unwrap_or(true),
"`{n}.isqrt()` should be higher than {isqrt_n})."
);
}
}
// Check the square roots of:
//
// * the first 1,024 perfect squares
// * halfway between each of the first 1,024 perfect squares
// and the next perfect square
// * the next perfect square after the each of the first 1,024
// perfect squares, minus one
// * the last 1,024 perfect squares
// * the last 1,024 perfect squares, minus one
// * halfway between each of the last 1,024 perfect squares
// and the previous perfect square
#[test]
// Skip this test on Miri, as it takes too long to run.
#[cfg(not(miri))]
fn isqrt_extended() {
// The correct value is worked out by using the fact that
// the nth nonzero perfect square is the sum of the first n
// odd numbers:
//
// 1 = 1
// 4 = 1 + 3
// 9 = 1 + 3 + 5
// 16 = 1 + 3 + 5 + 7
//
// Note also that the last odd number added in is two times
// the square root of the previous perfect square, plus
// one:
//
// 1 = 2*0 + 1
// 3 = 2*1 + 1
// 5 = 2*2 + 1
// 7 = 2*3 + 1
//
// That means we can add the square root of this perfect
// square once to get about halfway to the next perfect
// square, then we can add the square root of this perfect
// square again to get to the next perfect square, minus
// one, then we can add one to get to the next perfect
// square.
//
// This allows us to, for each of the first 1,024 perfect
// squares, test that the square roots of the following are
// all correct and equal to each other:
//
// * the current perfect square
// * about halfway to the next perfect square
// * the next perfect square, minus one
let mut n: $T = 0;
for sqrt_n in 0..1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T {
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`{sqrt_n}.pow(2).isqrt()` should be {sqrt_n}."
);
n += sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n += sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n += 1;
}
// Similarly, for each of the last 1,024 perfect squares,
// check:
//
// * the current perfect square
// * the current perfect square, minus one
// * about halfway to the previous perfect square
//
// `MAX`'s `isqrt` return value is verified in the `isqrt`
// test function above.
let maximum_sqrt = <$T>::MAX.isqrt();
let mut n = maximum_sqrt * maximum_sqrt;
for sqrt_n in (maximum_sqrt - 1_024.min((1_u128 << (<$T>::MAX.count_ones()/2)) - 1) as $T..maximum_sqrt).rev() {
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n + 1,
"`{0}.pow(2).isqrt()` should be {0}.",
sqrt_n + 1
);
n -= 1;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"`({}.pow(2) - 1).isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n -= sqrt_n;
isqrt_consistency_check(n);
assert_eq!(
n.isqrt(),
sqrt_n,
"{n} is about halfway between `{sqrt_n}.pow(2)` and `{}.pow(2)`, so `{n}.isqrt()` should be {sqrt_n}.",
sqrt_n + 1
);
n -= sqrt_n;
}
}
}
)*
};
}
macro_rules! signed_check {
($T:ident) => {
/// This takes an input and, if it's nonnegative or
#[doc = concat!("`", stringify!($T), "::MIN`,")]
/// checks that `isqrt` and `checked_isqrt` produce equivalent results
/// for that input and for the negative of that input.
///
/// # Note
///
/// This cannot check that negative inputs to `isqrt` cause panics if
/// panics abort instead of unwind.
fn isqrt_consistency_check(n: $T) {
// `<$T>::MIN` will be negative, so ignore it in this nonnegative
// section.
if n >= 0 {
assert_eq!(
Some(n.isqrt()),
n.checked_isqrt(),
"`{n}.checked_isqrt()` should match `Some({n}.isqrt())`.",
);
}
// `wrapping_neg` so that `<$T>::MIN` will negate to itself rather
// than panicking.
let negative_n = n.wrapping_neg();
// Zero negated will still be nonnegative, so ignore it in this
// negative section.
if negative_n < 0 {
assert_eq!(
negative_n.checked_isqrt(),
None,
"`({negative_n}).checked_isqrt()` should be `None`, as {negative_n} is negative.",
);
// `catch_unwind` only works when panics unwind rather than abort.
#[cfg(panic = "unwind")]
{
std::panic::catch_unwind(core::panic::AssertUnwindSafe(|| (-n).isqrt())).expect_err(
&format!("`({negative_n}).isqrt()` should have panicked, as {negative_n} is negative.")
);
}
}
}
};
}
macro_rules! unsigned_check {
($T:ident) => {
/// This takes an input and, if it's nonzero, checks that `isqrt`
/// produces the same numeric value for both
#[doc = concat!("`", stringify!($T), "` and ")]
#[doc = concat!("`NonZero<", stringify!($T), ">`.")]
fn isqrt_consistency_check(n: $T) {
// Zero cannot be turned into a `NonZero` value, so ignore it in
// this nonzero section.
if n > 0 {
assert_eq!(
n.isqrt(),
core::num::NonZero::<$T>::new(n)
.expect(
"Was not able to create a new `NonZero` value from a nonzero number."
)
.isqrt()
.get(),
"`{n}.isqrt` should match `NonZero`'s `{n}.isqrt().get()`.",
);
}
}
};
}
tests!(signed_check: i8 i16 i32 i64 i128);
tests!(unsigned_check: u8 u16 u32 u64 u128);